Naval Facilities Engineering Command, Southwest Contracts Department 1220 Pacific Highway, Building 127, Room 112 San Diego, CA 92132-5190

CTO No. 0004

FINAL CORRECTIVE ACTION PLAN FOR UST SITE 14137

June 9, 2006

MARINE CORPS BASE CAMP PENDLETON, CALIFORNIA

DCN: SES-TECH-06-0060

Prepared by:

SES-TECH

18000 International Boulevard, Suite 1009 Seattle, WA 98188

Sarah L. Denton Senior Geologist

Mark Cutler, P.G., C.H Project Manager

MARK CUTLER

TABLE OF CONTENTS

			<u>PAGE</u>
LIS	Γ OF TAE	BLES	iii
LIST	Γ OF FIG	URES	iii
ABI	BREVIAT	TIONS AND ACRONYMS	iv
1.0	INTROI	DUCTION	1-1
		ITE IDENTIFICATION	
		DBJECTIVES	
2.0	SITE DI	ESCRIPTION AND HISTORY	2-1
		ITE DESCRIPTION	
	2.2 IN	NITIAL SITE INVESTIGATION	2-1
		ST REMOVAL	
		DDITIONAL SITE ASSESSMENT	
		ROUNDWATER MONITORING WELL ABANDONMENT	
		OIL EXCAVATION ACTIVITIES	
		6.1 Soil Excavation and Confirmation Sampling	
		.6.2 Soil Excavation Backfilling	
		OST-EXCAVATION GROUNDWATER SAMPLING	
3.0	ASSESS	SMENT OF IMPACTS	3-1
5.0		ATURE AND EXTENT OF CONTAMINATION	
		1.1 Soil	
	3.	1.2 Groundwater	
	3.2 G	SEOLOGY AND HYDROGEOLOGY	3-2
	3.3 E	VALUATION OF POTENTIAL IMPACTS	3-2
4.0	ASSESS	SMENT OF CLEANUP REQUIREMENTS	4-1
		PPLICABLE CLEANUP LEVELS	
	4.2 C	ORRECTIVE ACTION	4-1
5.0		FICATION AND EVALUATION OF REMEDIAL ALTERNATIVES	
		EMEDIAL TECHNOLOGY SCREENING	
		EMEDIAL ALTERNATIVES FOR SOIL	
	5.	2.1 Alternative 1: No Further Action	
		5.2.1.1 Effectiveness	
		5.2.1.2 Implementability	
	_	5.2.1.3 Cost	
	3.	2.2 Alternative 2: Excavation with Off-Site Disposal	
		J.Z.Z.1 LIIOUI (OIIOSS	

TABLE OF CONTENTS

(Continued)

					<u>PAGE</u>
			5.2.2.2	Implementability	5-4
			5.2.2.3	Cost	5-4
	5.3	REMI	EDIAL AL	TERNATIVES FOR GROUNDWATER	5-5
		5.3.1	Groundy	vater Alternative 1: No Further Action	5-5
			5.3.1.1	Effectiveness	5-5
			5.3.1.2	Implementability	5-6
			5.3.1.3	Cost	5-6
		5.3.2	Alternati	ive 2: Remediation by Monitored Natural Attenuation	5-6
			5.3.2.1	Effectiveness	5-7
			5.3.2.2	Implementability	5-7
			5.3.2.3	Cost	5-7
6.0	REC	OMME	NDATION	IS	6-1
7.0	REFI	ERENC	ES		7-1
APP	PENDI	CES			
App	endix .	A We	ll Permit D	Occumentation	
App	endix]		ckpile Wai ıling Mani	ver Certificate and Soil Excavation Non-hazardous Materia fests	als
App	endix (-	nalytical Reports for Excavation Confirmation Soil Samples ackfill Material	s and
App	endix 1	D Exc	cavation Co	ompaction Report	
App	endix l	Ma	-	nalytical Reports, Field Sampling Logs, and Non-hazardous ing Manifests for Well Installation and March 2006 Ground nt	

LIST OF TABLES

Table 2-1	Initial Site Assessment Soil Sample Results (1991/1992) and UST Removal Soil Sample Results (1996), UST Site 14137, MCB Camp Pendleton, California
Table 2-2	Summary of Historical Groundwater Sampling Results, UST Site 14137, MCB Camp Pendleton, California
Table 2-3	Summary of Historical Soil Sampling Results, UST Site 14137, MCB Camp Pendleton, California
Table 2-4	Summary of Soil Excavation Confirmation Sample Results, UST Site 14137, MCB Camp Pendleton, California
Table 2-5	Summary of Excavation Fill Material Sample Results, UST Site 14137, MCB Camp Pendleton, California
Table 2-6	Summary of Historical Groundwater Elevations, UST Site 14137, MCB Camp Pendleton, California
Table 4-1	Proposed Cleanup Objectives for Diesel Contaminants, UST Site 14137, MCB Camp Pendleton, California
Table 5-1	Summary of Screening of Remedial Technologies for Soil, UST Site 14137, MCB Camp Pendleton, California
Table 5-2	Summary of Screening of Remedial Technologies for Groundwater, UST Site 14137, MCB Camp Pendleton, California
	LIST OF FIGURES
Figure 1-1	Site Vicinity Map
Figure 2-1	Site Location Map
Figure 2-2	Historical Soil Sampling Results from Tank Removal (1996) and Initial Site Assessment (Jacobs Engineering Group, 1992)
Figure 2-3	Historical Soil Sampling Results (SOTA Environmental Technology, Inc., 2001)
Figure 2-4	Historical Groundwater Sampling Results (SOTA Environmental Technology, Inc., 2001)
Figure 2-5	Soil Excavation Confirmation Sampling Results
Figure 2-6	Cross Section A-A'
Figure 2-7	Groundwater Gradient and Contaminant Concentration Map

ABBREVIATIONS AND ACRONYMS

μg/L micrograms per liter
bgs below ground surface

BTEX benzene, toluene, ethylbenzene and total xylenes

CAP Corrective Action Plan cfu colony forming units

cu yd cubic yard

DEH Department of Environmental Health
EPA U.S. Environmental Protection Agency

g gram

JEG Jacobs Engineering Group

MCB Marine Corps Base

MCL Maximum Contaminant Level

mg/kg milligrams per kilogram

mg/L milligrams per liter

MNA monitored natural attenuation

MPN most probable number
MTBE methyl tert-butyl ether

NAVFAC SW Naval Facilities Engineering Command, Southwest

ND non-detect

PAH polynuclear aromatic hydrocarbon

PCE tetrachloroethene

PRG Preliminary Remedial Goal

PVC polyvinyl chloride

RPM Remedial Project Manager

RWQCB Regional Water Quality Control Board

SES-TECH Sealaska Environmental Services, LLC and Tetra Tech EC, Inc.

SOTA Environmental Technology, Inc.

SPLP Synthetic Precipitation Leaching Procedure

TCE trichloroethene

TPH total petroleum hydrocarbons

TPH-d total petroleum hydrocarbons quantified as diesel

ABBREVIATIONS AND ACRONYMS

(Continued)

TPH-g total petroleum hydrocarbons quantified as gasoline

TRPH total recoverable petroleum hydrocarbons

TtEC Tetra Tech EC, Inc.

UST Underground Storage Tank
VOC volatile organic compound

Water Board California Regional Water Quality Control Board

WQO Water Quality Objective

1.0 INTRODUCTION

This Corrective Action Plan (CAP) for Underground Storage Tank (UST) Site 14137, Marine Corps Base (MCB) Camp Pendleton, California (Figure 1-1), was prepared by SES-TECH, a joint venture between Sealaska Environmental Services, LLC and Tetra Tech FW, Inc.. This CAP summarizes site investigation activities, soil excavation activities, confirmation soil sampling, recent groundwater monitoring well installation, and post-excavation groundwater sampling activities conducted in support of efforts to achieve regulatory site closure. This CAP was prepared under the Naval Facilities Engineering Command, Southwest (NAVFAC SW) Contract No. N68711-04-D-1104, Contract Task Order No. 0004.

1.1 SITE IDENTIFICATION

The following list summarizes site identification data:

Site Address: Building 14137, 14 Area

MCB Camp Pendleton, CA 92055

Facility Name: Combat Skills Training School

County of San Diego Department of

Environmental Health (DEH) Case

No.:

H05939-267

Property Owner and Responsible

Party:

United States Marine Corps

MCB Camp Pendleton Contact: Mr. Chet Storrs, Remediation Branch Manager

Assistant Chief of Staff, Environmental Security

Building 22165

MCB Camp Pendleton, CA 92055-5008

(760) 725-9774

Remedial Project Manager (RPM): Mr. Bipin Patel

NAVFAC SW

1220 Pacific Highway San Diego, CA 92132-5181

(619) 532-4814

1.2 OBJECTIVES

The primary objectives of this CAP include:

- Summarize the site history and assess the impacts of contamination detected in soil and groundwater.
- Identify and evaluate relevant potential corrective action alternatives.

- Provide a recommendation regarding the most appropriate corrective action alternatives for the site.
- Meet the requirements of the California Regional Water Quality Control Board (Water Board; formerly known as the Regional Water Quality Control Board [RWQCB]) and the DEH for the submittal of a CAP.

UST Site 14137 is regulated under the California State Water Resources Control Board Leaking Underground Fuel Tank program as administered by the Water Board, San Diego Region. The document guiding the assessment, remediation, and closure process for the site is the *San Diego County Site Assessment and Mitigation Manual 2004* (San Diego County DEH, 2004).

The overall purpose of this CAP is to identify and evaluate remedial alternatives for effectively and appropriately addressing contamination at UST Site 14137 and to provide a recommendation regarding corrective action at the site. This CAP contains seven sections including this introduction (Section 1.0):

- Section 2.0 description of the site and a summary of previous site activities
- Section 3.0 assessment of current soil and groundwater impacts
- Section 4.0 summary of site cleanup goals
- Section 5.0 list of alternatives that are appropriate for the site and evaluations on their effectiveness, implementability, and cost
- Section 6.0 recommendation on the most preferred alternatives
- Section 7.0 list of references used to prepare this CAP

2.0 SITE DESCRIPTION AND HISTORY

The following sections provide a brief description of the site and a summary of previous activities.

2.1 SITE DESCRIPTION

Building 14137 is located adjacent to the intersection of 18th Street and "G" Street, in the 14 Area of MCB Camp Pendleton and is used as the Combat Skills Training School Facility (Figure 2-1). A 1,000-gallon single-walled, steel-reinforced, concrete UST was installed at the northwest side of Building 14137 in 1943. The UST stored diesel fuel for the facility heating system and was removed in 1996.

2.2 INITIAL SITE INVESTIGATION

After tank integrity testing in 1990 indicated that UST 14137 was leaking, Jacobs Engineering Group (JEG) conducted an initial assessment of the site. On December 31, 1991, and January 30 and 31, 1992, JEG completed a subsurface investigation, including drilling and sampling seven soil borings to total depths ranging from 10 to 25 feet below ground surface (bgs) (Figure 2-2). Because groundwater was encountered during the site investigation, three soil borings (MW14137-1 through 3) were converted to monitoring wells.

During the assessment activities, soil samples were collected and analyzed for total recoverable petroleum hydrocarbons (TRPH) using U.S. Environmental Protection Agency (EPA) Method 418.1. TRPH results ranged from non-detect (ND) to 252 milligrams per kilogram (mg/kg) (Table 2-1 and Figure 2-2).

2.3 UST REMOVAL

On October 18, 1996, the UST and associated product piping (approximately 19 feet) were removed from the site under the supervision of a Hazardous Materials Specialist from the San Diego County DEH. The tank was 7 feet in height (12 inches extended aboveground) and 6 feet in diameter. The tank excavation dimensions were approximately 12 feet by 13 feet and 7.5 feet in depth.

Soil samples collected during the tank removal activities were analyzed for total petroleum hydrocarbons (TPH) quantified as diesel (TPH-d) and TPH quantified as gasoline (TPH-g) using EPA Method 8015 Modified. TPH-d was detected in the two samples collected at 9 feet bgs beneath the tank (14137-A and 14137-B) at concentrations of 7,900 mg/kg and 10,000 mg/kg, respectively (Table 2-1, Figure 2-2). TPH-g was not detected in any of the soil samples, and groundwater was not encountered during the UST removal.

2-1

2.4 ADDITIONAL SITE ASSESSMENT

Additional site assessment activities were completed by SOTA Environmental Technology, Inc. (SOTA) during two separate field events in 1998 and 2000. In November 1998, SOTA drilled and sampled six soil borings to depths ranging from 10 to 15 feet bgs (Figure 2-3). Three of the borings (MW14137-4, MW14137-5, and MW14137-6) were subsequently completed as groundwater monitoring wells. All soil samples were analyzed for TPH-d and TPH-g by a mobile laboratory. The sample with the highest TPH-d concentration was additionally analyzed by the mobile laboratory for methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Approximately 10 percent of the soil samples were submitted to a stationary laboratory for reanalysis of TPH-d and TPH-g to confirm the mobile laboratory results. The stationary laboratory also performed additional analyses for volatile organic compounds (VOCs), polynuclear aromatic hydrocarbon (PAH), Synthetic Precipitation Leaching Procedure (SPLP)/TPH-d, SPLP/TPH-g, SPLP/VOC, SPLP/PAH, and various physical, biological, and chemical parameter analyses on select soil samples.

Additionally, during laboratory data quality validation of the 1998 data, it was determined that the soil samples that had been analyzed for SPLP in 1998 were analyzed after the method holding time. The purpose of the March 2000 SOTA investigation was to collect new soil samples for the SPLP analysis to ensure the validity of SPLP results. In addition, all samples collected during the March 2000 sampling event were also analyzed by a stationary laboratory for TPH-d, TPH-g, VOCs, and PAHs (Table 2-2). In March 2000, additional soil samples were collected from one additional soil boring (MW14137-4A) placed approximately 3 feet from MW14137-4, which had previously exhibited the highest TPH-d concentrations (the former tank cavity). Samples were collected at 10, 15, and 20 feet bgs from this new boring (Figure 2-3).

The analytical results of the SOTA sampling are described in further detail in the following sections:

Diesel and TRPH in Soil

The location that exhibited the highest TPH-d concentration in the November 1998 sampling event was MW14137-4, located in the former tank cavity (TPH-d was detected up to 730 mg/kg at 15 feet bgs). Laboratory analyses of March 2000 soil samples from MW14137-4A at 10, 15 and 20 feet bgs showed TPH-d concentrations of 5,260 mg/kg; 50 mg/kg; and 26 mg/kg, respectively (Table 2-2).

The locations of soil samples that exhibited TPH-d concentrations at UST Site 14137 are consistent with a diesel release. SOTA estimated the extent of diesel contamination to reach no farther than 10 to 15 feet laterally from the former UST and 15 feet bgs beneath the former UST.

Gasoline, BTEX and MTBE in Soil

All soil samples were analyzed for TPH-g by a mobile laboratory. In addition, three soil samples (from MW14137-4A at 10 feet bgs, 15 feet bgs, and 20 feet bgs) were also analyzed for TPH-g by a stationary laboratory. TPH-g was not detected in soil samples analyzed by the mobile laboratory; however, TPH-g was reported by the stationary laboratory at a concentration of 300 mg/kg in the soil sample from MW14137-4A at 10 feet bgs. However, this TPH-g concentration was not calculated from a typical gasoline pattern and most of the peaks in the chromatogram corresponded to the heavier portion of the chain. Based on this, the detection was determined to be more representative of the TPH-d range.

MTBE was not detected in any soil sample. Insignificant levels of BTEX compounds were detected in some of the soil samples at or below the laboratory practical quantification limits (Table 2-2).

Other Volatile Organic Compounds in Soil

Several VOCs were identified at low concentrations in soil boring MW14137-4 at 5 feet bgs and boring MW14137-4A at 10, 15, and 20 feet bgs. The highest concentration measured was for 1,2,4-trimethylbenzene (260 μ g/kg) in boring MW14137-4A at 10 feet bgs. This concentration is significantly less than the residential Preliminary Remediation Goal (PRG) of 5.7 mg/kg.

Polynuclear Aromatic Hydrocarbons in Soil

Several PAHs were identified at relatively low concentrations in soil borings MW14137-4 and MW14137-4A. The highest PAH concentration measured was for phenanthrene (1,240 mg/kg) in boring MW14137-4A at 10 feet bgs. The source of PAHs is presumed to be associated with the diesel release.

Synthetic Precipitation Leaching Procedure in Soil

Due to an oversight, SPLP analysis was performed on the 1998 samples after the hold time had been exceeded. The 1998 SPLP results were, therefore, not used and additional soil samples were collected in March 2000. SPLP analysis was performed on soil samples collected from MW14137-4A because this location had exhibited the highest TPH-d concentrations in soil. The sample at 10 feet bgs contained SPLP/TPH-d at 72 milligrams per liter (mg/L), and the sample at 15 feet bgs contained SPLP/TPH-d at 7.8 mg/L.

Biological Factors in Soil

Selected soil samples were submitted for analyses of heterotrophic microorganisms and hydrocarbon degraders. Plate counts of heterotrophic microorganisms yielded 1,800 colony forming units (cfu) per 10 grams (g). The results indicate that there are naturally occurring microorganisms in site soils capable of degrading hydrocarbons.

Groundwater Sampling Results

During the additional site assessment, groundwater samples were collected from the three monitoring wells installed by SOTA (MW14137-4, MW14137-5, and MW14137-6) (SOTA, 2001). The water sample collected from monitoring well MW14137-4, located adjacent to the former tank cavity, contained TPH-d and TPH-g at concentrations of 10 mg/L and 0.63 mg/L, respectively. However, as with the soil sample previously discussed, TPH-g did not have a typical gasoline pattern and most of the peaks in the chromatogram corresponded to the heavier portion of the chain. Based on this, the detection was determined to be more representative of the TPH-d range. TPH-d was not detected in water samples from monitoring wells MW14137-5 and MW14137-6.

Several VOCs were identified at low concentrations in the water samples collected from each well (MW14137-4, MW14137-5, and MW14137-6), including trace levels of trichloroethene (TCE) and tetrachloroethene (PCE) and low levels of MTBE and BTEX. Benzene was detected at a concentration of 7 μ g/L and MTBE was reported at a concentration of 431 μ g/L in the water sample collected from MW4 (located adjacent to the tank cavity).

In addition, two PAHs were detected at low concentrations in the water sample from monitoring well MW4. Naphthalene was detected at a concentration of 9 μ g/L, and pyrene was detected at a concentration of 0.5 μ g/L.

Groundwater monitoring well locations and a summary of these groundwater sample results are shown in Figure 2-4 and Table 2-3.

2.5 GROUNDWATER MONITORING WELL ABANDONMENT

Before soil excavation activities began, existing groundwater monitoring well MW14137-4, located adjacent to the former tank cavity, was abandoned. The well in the area of excavation was abandoned on January 27, 2006, under San Diego County DEH permit number LMON103667. The well was abandoned by over-drilling with an 8-inch diameter auger and backfilled with bentonite grout to the ground surface. A copy of the well abandonment permit and permit closeout documentation is included in Appendix A.

2.6 SOIL EXCAVATION ACTIVITIES

On February 2 and February 3, 2006, TPH-d-impacted soil was excavated from the former tank cavity area. The soil excavation, backfill activities, and the results of confirmation sampling are discussed in the following sections.

2.6.1 Soil Excavation and Confirmation Sampling

The horizontal dimensions of the excavation were 20 feet by 16.5 feet (Figure 2-5) and the excavation extended vertically to 17 feet bgs. A total of approximately 208 cubic yards of soil were excavated.

Soil removed from the excavation was temporarily stockpiled in accordance with RWQCB 95-96 Guidelines (RWQCB, 1995) prior to being transported off site for disposal. A copy of the stockpile waiver certificate is included in Appendix B. The excavated diesel-contaminated soil was transported under a non-hazardous waste manifest to Candelaria Environmental in Anza, California, for disposal (the waste manifests are also included in Appendix B).

A total of eight confirmation soil samples and one duplicate sample were collected from the excavation sidewalls and bottom. The samples were analyzed for TPH-d at a stationary laboratory. Pursuant to the Water Board, the three samples with the highest TPH-d result were also analyzed for SPLP/TPH-d, SPLP/VOCs, and SPLP/PAHs. In addition, one of the samples collected from the west sidewall (0004-075) was also analyzed for total heterotrophic hydrocarbon degraders and diesel-oxidizing degraders. The confirmation soil sample results are summarized on Table 2-4 and are shown on Figure 2-5. The laboratory analytical reports are included in Appendix C.

Soil sample results indicated that no TPH-d contamination remained along the east sidewall and relatively low levels of TPH-d remained along the north sidewall (53 mg/kg) and excavation bottom (14 mg/kg) (Figure 2-5). The samples with the highest TPH-d results were collected from the lower portion of the south sidewall (6,700 mg/kg) and the lower portion of the west sidewall (1,600 mg/kg). Visibly contaminated soil extended from 8 to 15 feet bgs on the western sidewall and from 7 to 15 feet on the southern sidewall.

The excavation could not be extended to the south or to the west because of the presence of Building 14137. A cross section depicting the excavation, site soils, and detected TPH-d concentrations is shown in Figure 2-6.

The three samples with the highest TPH-d results were also analyzed for SPLP/TPH-d, SPLP/VOCs, and SPLP/PAHs (Table 2-4). SPLP/TPH-d was reported in all three samples ranging from 5 mg/L to 34 mg/L. SPLP/VOC results indicated that low levels of leachable ethylbenzene, xylenes, and toluene were present up to 5.3 micrograms per liter (μ g/L), 7.9 μ g/L, and 0.65 μ g/L, respectively. Four leachable PAHs were detected: including acenaphthene (up to 6.3 μ g/L), fluorene (up to 23 μ g/L), naphthalene (up to 6.5 μ g/L), and phenanthrene (up to 43 μ g/L). Pyrene was also reported in one of the samples at a trace (estimated) concentration of 2.2 μ g/L (Table 2-4).

One sample from the west sidewall was also submitted for analysis of total heterotrophic hydrocarbon degraders and diesel-oxidizing degraders. Results indicated that $2.5E^{+0.3}$ total aerobic

heterotrophic bacteria are present and $1.66E^{+03}$ total diesel oxidizing bacteria are naturally present in site soils (Table 2-4). These bacteria are capable of degrading the hydrocarbon contamination at the site and are present at levels above that considered optimal $(1.0E^{+3})$ (EPA, 1995).

2.6.2 Soil Excavation Backfilling

Backfilling the excavation was completed on February 3, 2006, with fill material from the MCB Camp Pendleton borrow pit (Three Mile Pit). The backfill material was sampled and analyzed for TPH-d EPA Method 8015M), pH (EPA Method 9045), Title 22 Metals (EPA Method 6010B), and asbestos (California Air Resources Board Method 435). Analytical results from the backfill material were within acceptance limits specified in the project Work Plan (SES-TECH, 2005) for all parameters except thallium (Table 2-5). Thallium was detected at 7.23 mg/kg, which is slightly above the residential PRG of 5.2 mg/kg (EPA, 2004). Arsenic was also reported in the fill material above its residential PRG; however, the level was below the average background level for arsenic in surface soils at MCB Camp Pendleton (Southwest Division Naval Facilities Engineering Command, 1997). Analytical laboratory reports from the fill material are included in Appendix C. The fill material was placed in 1-foot lifts using a front-end loader, with the goal of a minimal 90 percent compaction. Ninyo and Moore performed compaction tests on each 1-foot lift from 5 feet bgs to surface to ensure that the required compaction level had been achieved. All results were between 92 and 97 percent compaction. The compaction report is included as Appendix D.

2.7 GROUNDWATER MONITORING WELL INSTALLATION

Pursuant to a request from the Water Board, after the excavation, well MW14137-7 was installed along the southwest side of Building 14137, downgradient from the former tank cavity, as shown in Figure 2-7. The permit for both the abandonment and new well installation and the boring/well installation log for the new well are included in Appendix A. The well drilling was performed February 21, 2006, by Test America Drilling using a hollow-stem auger drilling rig. The well was installed to 15 feet bgs and was completed with 4-inch-diameter polyvinyl chloride (PVC) blank casing and 0.010-inch PVC screen. The well screen was installed between 5 and 15 feet bgs.

The new well was developed after construction to clear the screen and filter-pack of fine materials that could possibly clog the screen slots and reduce the effectiveness of the screen. The well was developed by surging and bailing. All soil cuttings were transported under a non-hazardous waste manifest to US Ecology in Beatty, Nevada, for disposal, and all decontamination water and well development water were transported under a non-hazardous waste manifest to K-Pure in Rancho Cucamonga, California, for disposal (the waste manifests are included in Appendix E).

After installation of the new well, a topographic survey was performed to delineate the location and elevation of the well. Measurements were to an accuracy of 0.1 foot horizontally and 0.01 foot vertically, and were in accordance with North American Datum 83 and North American Vertical Datum 88, respectively. The results of the survey are included on the boring log included with the well permit in Appendix A.

2.8 POST-EXCAVATION GROUNDWATER SAMPLING

On March 14, 2006, after the completion of soil excavation activities (Section 2.6) and the installation of new well MW14137-7, a groundwater sampling event was completed.

Groundwater samples were subsequently collected using low-flow sampling methodology and were submitted for laboratory analyses of TPH-d (EPA Method 8015B), VOCs (EPA Method 8260B), and PAHs (EPA Method 8310). Results are summarized on Table 2-3 and Figure 2-7. TPH-d was detected in MW14137-2, located cross-gradient of the former tank cavity, at a concentration of 2.2 mg/L. No TPH-d was detected in wells MW14137-1, MW14137-3, MW14137-5, and MW14137-6, located cross-gradient and downgradient of the former UST. Low concentrations of TPH-d were detected at MW14137-7, located downgradient of the former UST at 0.25 and 0.26 μg/L for the sample and duplicate, respectively. Trace concentrations of bromodichloromethane and dibromodichloromethane were also detected in groundwater retrieved from MW14137-7. MTBE was detected at MW14137-2 at a concentration of 9.5 μg/L and at trace concentrations in MW14137-7. No PAHs were detected in any water sample. The laboratory analytical reports and chain-of-custody form are included in Appendix E.

Prior to sampling, the depth to groundwater was measured at each well. Groundwater elevation data indicated that groundwater was flowing to the south to southeast with a gradient of approximately 0.03 feet/foot. The depth to groundwater at the site ranged from 6.74 to 7.82 feet bgs. Groundwater elevations are summarized on Table 2-6, and elevation contours are shown on Figure 2-7.

The analytical results were successfully uploaded to the Water Board Geotracker database (confirmation number 9669965982).

3.0 ASSESSMENT OF IMPACTS

This section presents information regarding the nature and extent of contamination, site hydrogeology, and an evaluation of potential impacts to nearby resources.

3.1 NATURE AND EXTENT OF CONTAMINATION

Data from site activities indicate that both soil and groundwater have been impacted with petroleum hydrocarbons. Brief descriptions of these impacts are summarized below.

3.1.1 Soil

Soil sample results from the previous site assessment activities (Sections 2.2 and 2.4) suggested that the highest levels of diesel contamination extended from the former tank cavity vertically to approximately 15 feet bgs and did not extend horizontally more than approximately 10 to 15 feet from the former UST.

In February 2006, approximately 208 cubic yards of diesel-impacted soil were excavated from the former tank cavity area (Section 2.6). The excavation extended horizontally 20 feet by 16.5 feet and vertically to 17 feet bgs (Figure 2-5). The horizontal extent of the excavation was limited to the south and west due to the presence of Building 14137. Laboratory results from confirmation soil samples indicated that no detectable TPH-d was present on the east sidewall and TPH-d was present at low levels (14 to 53 mg/kg) along the north sidewall and the excavation bottom. TPH-d, however, was present at relatively high levels along the deep portions of the west and south sidewalls (up to 6,700 mg/kg).

To calculate the volume of the remaining impacted soil near the former tank cavity, it is estimated that impacted soil extends horizontally approximately 5 feet from the west and south sidewalls and is present between approximately 8 to 15 feet bgs on the western sidewall (20 feet long sidewall) and between approximately 7 to 15 feet bgs along the southern sidewall (16.5 feet long sidewall). Based on these assumptions, the estimated volume of impacted soil remaining at the site is approximately 50 cubic yards (cu yds).

3.1.2 Groundwater

Analytical data collected during the most recent groundwater sampling event (March 2006) indicated that TPH-d contamination was present in MW14137-2, located cross-gradient of the former tank cavity, at a concentration of 2.2 mg/L. TPH-d was not detected in wells MW14137-1, MW14137-3, MW14137-5, and MW14137-6, also located cross-gradient and downgradient of the former UST. Very low concentrations of TPH-d were detected at MW14137-7, located downgradient of the former UST, at 2.5 and 2.6 µg/L for the sample and duplicate, respectively.

MTBE was detected at MW14137-2 at a concentration of 9.5 μ g/L and at trace concentrations in MW14137-7.

3.2 GEOLOGY AND HYDROGEOLOGY

MCB Camp Pendleton is situated in the Peninsular Ranges Geomorphic Province. In the east, the province consists of mountain ranges (Peninsular Ranges) that divide the Colorado Desert Geomorphic Province from this province. Geomorphic characteristics found in the province include mountain slopes, foothills, inland valleys, coastal valleys, coastal slopes, and coastal plains. Generally, MCB Camp Pendleton contains all these features, which slope to the west from the mountains located near the eastern border of the Base (with the exception of a low coastal mountain range).

The geology at UST Site 14137 primarily consists of a relatively thin layer of artificial fill material consisting of brown silty sand with some gravel overlying weathered granitic bedrock. The weathered granitic bedrock is first encountered approximately 5 to 10 feet bgs and is part of a Cretaceous igneous intrusion that underlies this part of the Base.

The site is relatively flat and the nearest surface water body, a tributary of Pilgrim Creek, is approximately 350 feet south of the site. Surface water from Pilgrim Creek has designated beneficial uses for agricultural supply, industrial service supply, contact water recreation, non-contact water recreation, warm freshwater habitat, and wildlife habitat.

Groundwater generally occurs at UST Site 14137 at approximately 7 to 8 feet bgs. According to the *Water Quality Control Plan for the San Diego Basin* (RWQCB, 1994), UST Site 14137 is located in the Mission Hydrologic Subarea of the Lower San Luis Hydrologic Area within the San Luis Rey Hydrologic Unit. Groundwater in this area has beneficial uses including municipal and domestic supply, agricultural supply, industrial process supply, and industrial service supply. However, no groundwater supply wells are located within 1.5 miles of the site.

3.3 EVALUATION OF POTENTIAL IMPACTS

Groundwater at MCB Camp Pendleton has designated municipal/domestic use. To assess the potential UST Site 14137 may have to impact groundwater and other nearby resources, the site was evaluated with criteria related to the effectiveness of the contaminant source removal, site characterization, stability of the groundwater plume, identification of potential nearby sensitive receptors, and whether the site poses a significant risk to human health or the environment. The criteria are presented below, along with applicable information from the site.

- 1. The leak has been stopped and ongoing sources have been removed or remediated to the extent practicable.
 - The former diesel underground storage tank and the associated piping were removed from the site in October 1996 (Section 2.3).
 - In February 2006, a total of approximately 208 cubic yards of hydrocarbon-impacted soil were excavated from the former tank cavity area (Section 2.6). After the excavation, soil confirmation samples did not detect TPH-d on the east sidewall and low levels of TPH-d (14 to 53 mg/kg) were present along the north sidewall and the excavation bottom. TPH-d was detected in the lower portion of the south sidewall (6,700 mg/kg TPH-d) and the lower portion of the west sidewall (1,600 mg/kg TPH-d), but the excavation could not be extended to the west and south because of the presence of Building 14137. It is estimated that approximately 50 cubic yards of TPH-d-impacted soil remain at the site.
- 2. The site has been adequately characterized.
 - An initial site investigation was completed on December 31, 1991, and January 30 and 31, 1992. Seven soil borings were drilled and sampled to total depths ranging from 10 to 25 feet bgs, and three of the borings were completed as groundwater monitoring wells (Section 2.2).
 - Additional site assessment activities were completed in 1998 and 2000 to further characterize the nature and extent of hydrocarbon contamination in soil and groundwater. A total of six soil borings were drilled and sampled up to 20 feet bgs, and three of the borings were completed as groundwater monitoring wells (Section 2.4). One round of groundwater sampling was completed.
 - Soil excavation activities were completed in February 2006 to remove as much hydrocarbon-impacted soil as practical (Section 2.6). After the excavation, eight confirmation soil samples, plus one duplicate, were collected from the excavation sidewalls and bottom to characterize the amount of TPH-d in remaining soils. Selected samples were additionally analyzed for SPLP/TPH-d, SPLP/VOCs, SPLP/PAHs, and total heterotrophic hydrocarbon degraders and diesel-oxidizing degraders. Results indicated that hydrocarbon degrading populations are naturally present in subsurface soils. These results were discussed in detail in Section 2.6.1.
 - Based on the above listed drilling, sampling, and soil excavation activities, it is believed soil impacts at the site have been adequately characterized.
- 3. The dissolved hydrocarbon plume is not migrating.
 - During the recently completed groundwater sampling event (March 2006), relatively low levels of TPH-d were detected in groundwater. The maximum level of TPH-d detected was 2.2 mg/L at MW14137-2, located cross-gradient of the former UST. Very low concentrations of TPH-d (0.25 mg/L) were detected at MW14137-7, downgradient of the former UST. No detectable concentrations of TPH-d were detected in other cross-gradient wells.

- 4. No water wells, deeper drinking water aquifers, surface water, or sensitive receptors are likely to be impacted.
 - Based on the *Marine Corps Base Camp Pendleton Environmental Operations Map* (MCB Camp Pendleton, 2003), the nearest potential sensitive receptor is a riparian habitat area approximately 150 feet east of the site. In addition, a California gnatcatcher 150-meter buffer zone is approximately 300 feet northeast of the site. None of these areas are expected to be impacted by UST Site 14137.
 - The nearest municipal groundwater supply well is over 1.5 miles west of the site and is not expected to be impacted.
 - The nearest surface water body, a tributary of Pilgrim Creek, is approximately 350 feet south of the site. Because of the relatively low hydraulic gradients across the site, the apparent relatively low levels of groundwater contamination, and the remaining low volume of impacted soil beneath Building 14137, the potential for nearby surface water bodies to be impacted by UST Site 14137 is considered insignificant.
- 5. The site presents no significant risk to human health.
 - It is extremely unlikely for humans to be exposed to impacted soil because the remaining impacted soil is beneath Building 14137.
 - The only potential for human exposure to contaminants in groundwater is through nearby water supply wells. However, the potential for exposure through groundwater is not anticipated because of the long distance to the nearest supply well (over 1.5 miles).
- 6. The site presents no significant risk to the environment.
 - The nearest potential sensitive receptor is a riparian habitat area approximately 150 feet east of the site. For the same reasons that nearby surface waste is not anticipated to be at risk, environment and nearby ecological receptors are not at risk. The riparian habitat is not located near the remaining impacted soil, which is beneath Building 14137.

Based on the above criteria, it is believed that the soil at UST Site 14137 has been adequately characterized. It is believed that since the volume of remaining hydrocarbon-impacted soil is relatively small and there are abundant hydrocarbon degraders naturally present in site soils, the soil does not present a significant risk to human health or the environment. However, because of the limited amount of groundwater sampling that has occurred at the site, especially at new well MW14137-7 located downgradient to the former tank cavity, it is believed that the Water Board will require additional groundwater sampling before site closure can be thoroughly evaluated.

4.0 ASSESSMENT OF CLEANUP REQUIREMENTS

Remediation of UST Site 14137 is monitored by the Water Board, San Diego Region, which has final review and signature authority for closure. The *San Diego County Site Assessment and Mitigation Manual 2004* (San Diego County DEH, 2004) provides a framework for investigating and remediating releases of petroleum products; however, cleanup goals are specified in other regulations and guidance. Applicable regulations and guidance for UST sites come from state and federal codes, various resolutions, and guidance documents. The following sections focus on cleanup levels and regulations guiding corrective action for residual contamination.

4.1 APPLICABLE CLEANUP LEVELS

Cleanup levels for UST Site 14137 are directly related to the Basin Plan (RWQCB, 1994). The Basin Plan provides cleanup standards, water quality objectives (WQOs) or Maximum Contaminant Levels (MCLs), for groundwater hydrologic units based on beneficial-use designations. A hydrologic unit may be designated for one or more of 23 beneficial uses, such as municipal and domestic supply, agricultural supply, industrial service supply, and so forth. The WQOs for a hydrologic unit must be protective of the most sensitive beneficial use designated for the applicable hydrologic unit. The municipal supply category, which includes sources of drinking water, requires the most protective standards for groundwater.

The Water Board has designated all groundwater at MCB Camp Pendleton located east of Interstate 5 to be current or potential sources of drinking water. Groundwater designated for use "as domestic or municipal supply shall not contain concentrations of chemical constituents in excess of MCLs" nor shall these waters "contain taste and odor producing substances in concentrations which cause nuisance or adversely affect beneficial uses" (RWQCB, 1994). Therefore, groundwater that is considered a potential source of drinking water cannot contain contaminant concentrations in excess of MCLs (or WQOs) and/or taste and odor water quality thresholds. Cleanup goals for soils are established so that impacted soil does not have the potential to leach contaminants into groundwater at levels above the groundwater cleanup goals. Therefore, as summarized in Table 4-1 and based on the above requirements, groundwater and soil cleanup goals for typical diesel fuel constituents are directly related to WQOs and MCLs.

4.2 CORRECTIVE ACTION

In addition to regulatory requirements on cleanup levels, California regulations specify corrective action requirements for restoring sites to appropriate cleanup levels. In particular, California State Water Resources Control Board Resolution No. 92-49 (as amended on April 21, 1994 and October 2, 1996) provides policies and procedures for corrective action of unauthorized discharges under Water Code Section 13304. This resolution directs that water affected by an unauthorized release attain either background water quality or the best water

quality that is reasonable if background water quality cannot be restored; however, it does not require that the requisite level of water quality be met at the time of site closure. Also, according to Resolution 92-49, site cleanup must be "consistent with the maximum benefit to the people of state" considering "all demands being made and to be made on those waters and the total values involved, beneficial and detrimental, economic and social, tangible and intangible." Therefore, corrective action should be reasonable and cost effective with respect to the site-specific conditions.

In Section 5.0, remedial alternatives for UST Site 14137 are identified and evaluated in terms of effectiveness, implementability, and cost.

5.0 IDENTIFICATION AND EVALUATION OF REMEDIAL ALTERNATIVES

This section presents the screening and evaluation process for identifying appropriate remedial alternatives for UST Site 14137. Remedial alternatives screened and evaluated in this CAP are directed at both soil and groundwater. A range of remedial technologies are identified and screened in Section 5.1 in order to select technologies that are expected to be effective, implementable, and cost-effective based on site-specific conditions. Technologies that are not appropriate for the site are eliminated early to streamline the technology evaluation process.

5.1 REMEDIAL TECHNOLOGY SCREENING

The Water Board requires that a minimum of two corrective action strategies be evaluated. To identify the two most appropriate potential technologies for both soil and groundwater, a variety of remedial options were initially screened. A summary of the screening process for soils is included in Table 5-1, and for groundwater, it is included on Table 5-2. The purpose of this screening is to identify and eliminate from further consideration remedial technologies that, because of site-specific conditions or costs, are not the most feasible and/or practical. Based on the screening (see Tables 5-1 and 5-2), the remedial action technologies determined to be the most practical for soil and groundwater at UST Site 14137 are:

Soil Remediation Alternatives:

• Alternative 1: No Further Action

• Alternative 2: Excavation with Off-site Disposal

Groundwater Remediation Alternatives:

• Alternative 1: No Further Action

• Alternative 2: Remediation by Monitored Natural Attenuation (MNA)

The following sections describe each above identified alternative and include evaluations of effectiveness, implementability, and cost. The evaluation of effectiveness includes consideration of overall protection of human health and the environment and both the long-term and short-term effectiveness of each alternative. Evaluation of the implementability of each alternative includes consideration of the technical and administrative feasibility. The cost evaluation of each alternative is based upon estimates for capital costs and, if applicable, long-term monitoring costs. Water Board acceptance of the CAP requires that the responsible party address the Water Board's comments and concerns for each alternative. The Water Board's acceptance may also not be completed until the public has had a chance to comment on the CAP and the comments have been addressed.

5.2 REMEDIAL ALTERNATIVES FOR SOIL

The following sections describe the two most applicable remedial alternatives, as determined during the alternative screening (Table 5-1), for remaining impacted soil at UST Site 14137.

5.2.1 Alternative 1: No Further Action

Under the no further action alternative, no additional soil remediation is proposed for the site. The remaining estimated 50 cubic yards of impacted soil would be left in place and is expected to further remediate via natural processes. Since the remaining contamination is minimal and nearby sensitive receptors, drinking water wells, surface water bodies, and so forth, are not expected to be adversely impacted (Section 3.3), the expense associated with additional active remediation would be an unnecessary use of public resources.

5.2.1.1 Effectiveness

The no further action alternative is expected to provide for permanent long-term reduction of remaining hydrocarbon contamination in soil at UST Site 14137. This would be effective in consideration of the following:

- The source of the diesel contamination, the leaking UST, has been removed.
- Soil excavation activities removed a majority of diesel-impacted soils at the former tank cavity. The soil excavation removed approximately 208 yards of impacted soil and extended to 17 feet bgs, which is approximately 9 to 10 feet below groundwater.
- Laboratory results from excavation confirmation soil samples indicated that no detectable TPH-d was present on the east sidewall and TPH-d was present at low levels (14 to 53 mg/kg) along the north sidewall and the excavation bottom. However, TPH-d was present along the deep portions of the west and south sidewalls (up to 6,700 mg/kg). The excavation could not be extended to the west and south due to the presence of Building 14137.
- Groundwater data from the most recent groundwater sampling event (March 2006) indicated that TPH-d contamination was present in MW14137-2, located cross-gradient of the former tank cavity (2.2 mg/L), and in MW14137-7 at low concentrations approximately 80 feet downgradient. These results indicate that potential groundwater contamination around the former tank cavity has not migrated downgradient to any significant extent.
- It is estimated that approximately 50 cubic yards of hydrocarbon-impacted soil remain at the site. This estimate is based on results from excavation confirmation samples and the assumption that contamination extends approximately 5 feet beyond the south and west sidewalls of the excavation under Building 14137.
- A soil sample collected from the west sidewall of the excavation (at approximately 13 feet bgs) was analyzed for the presence of total aerobic heterotrophic bacteria and total diesel-oxidizing bacteria. Results indicated that 2.5E⁺⁰³ total aerobic heterotrophic bacteria and

1.66E⁺⁰³ total diesel-oxidizing bacteria are naturally present in site soils. The bacteria populations are considered optimal by EPA for natural attenuation (EPA, 1995).

Based on the distance to the nearest municipal supply well (1.5 miles) and the distance to
the nearest sensitive ecological receptor (riparian habitat approximately 150 feet to the
east), the likelihood of diesel contamination from this site impacting human or sensitive
ecological receptors is considered insignificant.

Considering current site conditions, the no further action alternative is considered an effective alternative that is protective of human health and the environment.

5.2.1.2 Implementability

The no further action alternative for soil at the site is easy to implement because no further remediation activities would be conducted.

5.2.1.3 Cost

There are no costs associated with the no further action alternative for soil.

5.2.2 Alternative 2: Excavation with Off-Site Disposal

Excavation with off-site disposal includes removing the remaining TPH-d-impacted soils from along the west and south sidewalls of the previous excavation beneath Building 14137. It is estimated that approximately 50 cubic yards of hydrocarbon-impacted soil remain on the site. Alternative screening analyses (Table 5-1) indicated that potential *in situ* remedial options would not be effective because of the relatively impermeable soils (decomposed granitic rock) present at the site

Before the excavation would begin, the overhead electrical and communication lines located near the former tank cavity would need to be rerouted. To remove impacted soil along the sidewalls beneath Building 14137 would require supporting the building. The excavation would also likely require shoring since the excavation would extend approximately 10 feet below groundwater. The excavation would proceed until the presence of hydrocarbon contamination was no longer present and confirmation samples indicated that soil cleanup levels were met. The excavation would then be backfilled and the overhead utilities placed back into their original configuration.

5.2.2.1 Effectiveness

For soils, excavation and off-site disposal is a very effective alternative as it protects human health and the environment by removing the contamination and transferring it to an appropriately permitted facility. Excavation provides a permanent removal of the impacted soils.

5.2.2.2 Implementability

Excavation is a well-established, conventional technology for remediating contaminated soil; however, excavation of the current remaining impacted soils at UST Site 14137 is considered difficult since the impacted areas are located beneath Building 14137, and groundwater is present at approximately 7 to 8 feet bgs.

5.2.2.3 Cost

The following assumptions were made to develop a cost estimate for the excavation with off-site disposal alternative:

- An estimated 100 cubic yards of soil, including the estimated 50 cubic yards of impacted soil, would be excavated. The impacted soils would be transported off site for disposal as a non-hazardous waste.
- Prior to the excavation activities, an engineering plan would be required to determine the best method of supporting Building 14137, since the building is located above the soil contamination.
- Since two sides of Building 14137 are located near the area of excavation, shoring would also be required to protect the Building.
- The above ground electrical and communication lines around the former tank cavity would need to be temporarily rerouted prior to the excavation.

The total estimated cost for the excavation with off-site disposal alternative is approximately \$114,250. A general breakdown of the estimated costs is included below:

<u>Task</u>	Estimated Cost
Remedial Action Work Plan (draft and final versions)	\$15,000
Utility rerouting (\$3,000), building support (\$15,000), and shoring (\$10,000)	\$29,000
Soil excavation, backfill, and site restoration	\$12,500
(approximately 100 cubic yards of soil, estimated \$125/yard)	\$12,300
Confirmation soil sample analyses	\$4,500
[10 x \$90 (TPH-d) + 10 x \$180 (VOCs) + 10 x \$176 (PAHs)]	\$4,500
Transport and dispose of contaminated soil	\$8,250
(100 cubic yards = 150 tons) (\$55/ton)	\$6,230
Site supervision	
(2.5 weeks for construction supervisor at \$110/hour and health and safety support at \$85/hour)	\$25,000
Site Closure Report (draft and final versions)	\$20,000
Total Estimated Cost:	<u>\$114,250</u>

5.3 REMEDIAL ALTERNATIVES FOR GROUNDWATER

The following sections describe the two most applicable remedial alternatives, as determined during the alternative screening (Table 5-2), for impacted groundwater at UST Site 14137.

5.3.1 Groundwater Alternative 1: No Further Action

Under the no further action alternative, no groundwater remediation is proposed for the site. It is, however, presumed that:

- 1. The relatively low levels of TPH-d currently present in groundwater will be remediated via natural processes.
- 2. Nearby sensitive receptors have been identified and are not anticipated to be adversely impacted.

It is believed that the minor amounts of diesel components currently present in groundwater (up to 2.2 mg/L of TPH-d) will degrade naturally over time. It is implicit in this alternative that, as contamination levels are low, and there is evidence that hydrocarbon degraders are naturally present in aquifer soils, the expense associated with active remediation would be an unnecessary use of public resources.

5.3.1.1 Effectiveness

The no further action alternative for groundwater would be effective in providing protection of human health and the environment in consideration of the following:

- The source of the diesel contamination, the leaking UST, has been removed.
- Soil excavation activities removed a majority of diesel-impacted soils at the former tank cavity. The soil excavation removed approximately 208 yards of impacted soil and extended to 17 feet bgs, which is approximately 9 to 10 feet below groundwater.
- Groundwater data from the most recent groundwater sampling event (March 2006) indicated that TPH-d contamination was present in MW14137-2, located cross-gradient of the former tank cavity (2.2 mg/L), and in MW14137-7 at low concentrations approximately 80 feet downgradient. These results indicate that potential groundwater contamination around the former tank cavity has not migrated downgradient to any significant extent.
- A soil sample collected from the west sidewall of the excavation (at approximately 13 feet bgs) was analyzed for the presence of total aerobic heterotrophic bacteria and total diesel-oxidizing bacteria. Results indicated that 2.5E⁺⁰³ total aerobic heterotrophic bacteria and 1.66E⁺⁰³ total diesel-oxidizing bacteria are naturally present in aquifer soils. The bacteria populations are considered optimal by EPA for natural attenuation (EPA, 1995).
- Based on the distance to the nearest municipal supply well (1.5 miles) and the distance to the nearest sensitive ecological receptor (riparian habitat approximately 150 feet to the

east), the likelihood of diesel contamination from this site impacting human or sensitive ecological receptors is considered insignificant.

Considering site conditions, the no further action alternative for groundwater is considered an effective alternative that is protective of human health and the environment.

5.3.1.2 Implementability

The no further action alternative for groundwater is very easy to implement, as no groundwater remediation or monitoring activities would be conducted. After regulatory approval for closure, the groundwater monitoring wells at the site would be properly destroyed.

5.3.1.3 Cost

The only costs associated with the No Further Action alternative would be to properly destroy and document the destruction of the existing groundwater monitoring wells. The estimated cost is for the no further action alternative is \$16,385.

A summary of estimated costs is presented below:

<u>Task</u>	Estimated Cost
Well destruction permits (six wells)	\$785
Drilling subcontractor (\$900 x 6 wells)	\$5,400
Labor for subcontractor coordination and oversight	\$3,500
Transport and dispose of well abandonment debris and soil cuttings	\$3,200
Well destruction documentation	\$3,500
Total Estimated Cost:	<u>\$16,385</u>

5.3.2 Alternative 2: Remediation by Monitored Natural Attenuation

Alternative 2, remediation by MNA, relies on natural attenuation mechanisms for the remediation of residual groundwater contamination, and for this alternative, it is proposed that MNA include periodic groundwater monitoring to verify that natural attenuation processes are occurring. With regard to groundwater, natural attenuation is generally defined as a process by which contaminants are degraded, or reduced in concentration, by various naturally occurring processes. Major natural attenuation processes include biodegradation, dispersion, dilution, volatilization, and adsorption. The MNA alternative for groundwater is expected to provide for permanent, long-term reduction of contaminants.

5.3.2.1 Effectiveness

For groundwater, MNA is expected to effectively provide for protection of human health and the environment for the same reasons as described above for the no further action alternative. Those reasons are reiterated here:

- The source of the diesel contamination, the leaking UST, has been removed.
- Soil excavation activities removed a majority of diesel-impacted soils at the former tank cavity. The soil excavation removed approximately 208 yards of impacted soil and extended to 17 feet bgs, which is approximately 9 to 10 feet below groundwater.
- Groundwater data from the most recent groundwater sampling event (March 2006) indicated that TPH-d contamination was present in MW14137-2, located cross-gradient of the former tank cavity (2.2 mg/L), and in MW14137-7 at low concentrations approximately 80 feet downgradient. These results indicate that potential groundwater contamination around the former tank cavity has not migrated downgradient to any significant extent.
- A soil sample collected from the west sidewall of the excavation (at approximately 13 feet bgs) was analyzed for the presence of total aerobic heterotrophic bacteria and total diesel-oxidizing bacteria. Results indicated that 2.5E⁺⁰³ total aerobic heterotrophic bacteria and 1.66E⁺⁰³ total diesel-oxidizing bacteria are naturally present in site soils. The bacteria populations are considered optimal by EPA for natural attenuation (EPA, 1995).
- Based on the distance to the nearest municipal supply well (1.5 miles) and the distance to the nearest sensitive ecological receptor (riparian habitat approximately 150 feet to the east), the likelihood of diesel contamination from this site impacting human or sensitive ecological receptors is considered insignificant.

In consideration of these points, the MNA for groundwater alternative is considered an effective remedial alternative for this site.

5.3.2.2 Implementability

MNA is moderately easy to implement, as no active remediation activities would be conducted. Implementation of MNA would consist of collecting groundwater samples from existing monitoring wells over time to assess contaminant concentrations and biological activity.

5.3.2.3 Cost

The following assumptions were made to develop a cost estimate for the MNA alternative for groundwater:

• One year of quarterly groundwater monitoring would be required to confirm that levels of groundwater contamination are not increasing and the plume is not expanding.

• Fate and transport modeling will not be required to predict contaminant reduction and/or migration, nor would a contingency plan be required to address the possibility that contaminant reduction will not occur as estimated, because: 1) contaminants are already low in wells located downgradient from the former tank cavity and 2) impacts to human or sensitive ecological receptors are not expected.

The total cost associated with the MNA alternative for groundwater (including properly abandoning and documenting the destruction of the existing groundwater monitoring wells at closure) is approximately \$87,653. A general breakdown of the estimated costs is included below:

<u>Task</u>	Estimated Cost
Quarterly groundwater sampling field labor for 1 year (4 events x 2 persons x 10 hrs/event x \$85/hr)	\$6,800
Groundwater sample analysis (7 samples TPH-d (\$90)/event + 7 samples VOCs (\$180)/event + 7 samples PAHs (\$176)/event)	\$12,488
Transport and dispose well purge water (4 events)	\$3,400
Quarterly Groundwater Sampling Reports (\$9,500/report x 4 reports)	\$38,000
Closure Report	\$12,000
Well destruction and documentation (see Section 5.3.1.3)	\$14,965
Total Estimated Cost:	<u>\$87,653</u>

6.0 RECOMMENDATIONS

The no further action alternative for soil and the MNA alternative for groundwater are the requested alternatives for UST Site 14137. This request is supported based on the following:

• Source Removal. In 1996, the UST and associated piping were removed from the site. In February 2006, TPH-d-impacted soil was excavated (208 cubic yards) to the extent practical around the former tank cavity. After the excavation, soil confirmation samples did not detect TPH-d on the east sidewall, and low levels of TPH-d (14 to 53 mg/kg) were present along the north sidewall and the excavation bottom. TPH-d was detected in the lower portion of the south sidewall (6,700 mg/kg TPH-d) and the lower portion of the west sidewall (1,600 mg/kg TPH-d), but the excavation could not be extended to the west and south because of the presence of Building 14137. It is estimated that approximately 50 cubic yards of TPH-d-impacted soil remains at the site (Section 3.1.1). The costs estimated to remove the remaining impacted soil from beneath the building are considered high (Section 5.2.2.3) and are not believed to be warranted for the relatively small amount of hydrocarbon contamination remaining.

It is believed that since the remaining small volume of impacted soil does not present a significant risk to human health or the environment (see Section 3.3) and naturally occurring total aerobic heterotrophic bacteria and total diesel-oxidizing bacteria in soil are present at levels above those considered optimal (EPA, 1995), no further action for soil is an effective and cost efficient alternative for Site 14137.

- Extent of Remaining Soil Contamination. Soil excavation activities around the former tank cavity extended horizontally 20 feet by 16.5 feet and vertically to 17 feet bgs. Laboratory results from confirmation soil samples indicated that no detectable TPH-d was present on the east sidewall and TPH-d was present at low levels (14 to 53 mg/kg) along the north sidewall and the excavation bottom, but was present along the deep portions of the west and south sidewalls (up to 6,700 mg/kg). The impacted soil remaining near the former tank cavity is estimated to extend approximately 5 feet from the west and south sidewalls beneath Building 14137 between approximately 8 to 15 feet bgs on the western sidewall and between approximately 7 to 15 feet bgs along the southern sidewall. It is estimated that approximately 50 cubic yards of TPH-dimpacted soil remain at the site.
- Groundwater Plume Stability. Groundwater data from the most recent groundwater sampling event (March 2006) indicated that TPH-d contamination was present in MW14137-2, located cross-gradient of the former tank cavity (2.2 mg/L), and in MW14137-7 at low concentrations approximately 80 feet downgradient. These results indicate that potential groundwater contamination around the former tank cavity has not migrated downgradient to any significant extent. However, because of the relatively limited amount of groundwater sampling that has occurred at the site, especially at new well MW14137-7 located downgradient of the site, it cannot be concluded with any certainty that the plume is not expanding.
- **Risk.** Based on the distance to the nearest municipal supply well (1.5 miles), the distance to the nearest surface water (a small tributary to Pilgrim Creek approximately

350 feet south of the site), the absence of significant groundwater contaminants downgradient of the former tank cavity, the low volume of remaining soil contamination (estimated 50 cubic yards), the distance to the nearest sensitive ecological receptor (a riparian habitat approximately 150 feet to the east), and the presence of total heterotrophic hydrocarbon degraders and diesel-oxidizing degraders in aquifer soils at levels above those considered optimal (suggesting that natural attenuation is actively occurring at the site), the likelihood of diesel contamination from this site impacting human or sensitive ecological receptors is considered extremely small to negligible.

• Cost. The costs for excavation with off-site disposal for the remaining estimated 50 cubic yards of impacted soils (\$114,250) are significant when considering that the remaining impacted soil is not believed to be a threat to human health or nearby sensitive ecological receptors. Such expenditures for additional active soil remediation are believed to be an unnecessary use of public resources. Perhaps equally or more importantly, such expenditures would, in light of MCB Camp Pendleton's limited budget for environmental remediation, result in decreased availability of funds for remediation of sites that actually pose risks to human health or the environment.

The costs for MNA for groundwater (\$87,653) are considered necessary to evaluate potential seasonal changes in water quality, especially recently installed downgradient well MW14137-7, and to establish a high degree of certainty in the data to support regulatory site closure.

• Time Frame. Data collected for this site indicate that the tank has been removed, the majority of contaminated soils have been removed, the remaining impacted soils (estimated 50 cubic yards) are not believed to be a significant source of continued contaminant release, groundwater downgradient around the former tank cavity is not significantly impacted, conditions for biodegradation are favorable (hydrocarbon degraders are naturally present in aquifer soils at levels considered optimal [EPA, 1995]), contaminants are extremely unlikely to impact nearby sensitive receptors and the nearest municipal supply well (located 1.5 miles away), and groundwater in the immediate area is not expected to be used for any purpose in the foreseeable future. In consideration of all of the available information, it is believed that residual hydrocarbon contamination will be naturally remediated within a reasonable time frame.

In summary, since there are no known current pathways for exposure to the remaining relatively small volume of impacted soils (estimated 20 cubic yards), remaining impacted soils are not believed to be a source of contaminant release, and the costs associated with removing the remaining impacted soils is considered significant, the no further action alternative for soil is requested for UST Site 2389. However, since seasonal groundwater quality data have not been obtained from the site, the MNA alternative is requested for groundwater. It is recommended that 1 year of quarterly groundwater sampling be completed to evaluate potential seasonal changes in groundwater quality, and to obtain a high degree of confidence that groundwater is not impacted.

7.0 REFERENCES

California State Water Quality Control Board. 1996. Resolution No. 92-49 (As Amended or April 21, 1994 and October 2, 1996). Policies and procedures for corrective action or unauthorized discharges under Water Code Section 13304
Resolution No. 95-96.
Marine Corps Base Camp Pendleton, Assistant Chief of Staff, Environmental Security. 2003 Marine Corps Base Camp Pendleton Environmental Operations Map. September.
Regional Water Quality Control Board (RWQCB). 1994. Water Quality Control Plan for the San Diego Basin (Basin Plan), 1994 (amended).
San Diego County Department of Environmental Health (DEH), Land and Water Quality Division. 2004. San Diego County Site Assessment and Mitigation Manual 2004.
SES-TECH, 2005. Final Interim Remedial Action Work Plan for UST Site 14137, MCB Camp Pendleton, Revision 1. September.
Southwest Division Naval Facilities Engineering Command. 1997. Marine Corps Base Camp Pendleton, California, Remedial Investigation/Feasibility Study, Remedial Investigation for Group D Sites. Revision 0. Draft Final. With Jacobs Engineering Group and CH2M Hill. July.
SOTA Environmental Technology, Inc. (SOTA). 2001. Final Site Assessment Report for Underground Storage Tank (UST) at Site 14137, Marine Corps Base (MCB) Camp Pendleton, California. April.
United States Environmental Protection Agency (EPA). 1995. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. EPA 510-B-95-007. May.
. 2004. Preliminary Remediation Goals. October.

TABLES

TABLE 2-1

INITIAL SITE ASSESSMENT SOIL SAMPLE RESULTS (1991/1992) AND UST REMOVAL SOIL SAMPLE RESULTS (1996),

UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

		TPH-d	TPH-g	Benzene	Toluene	Ethylbenzene	Xylenes	TRPH
Date	Sample ID		•		(mg/kg)	•	•	•
Initial Inves	stigation Results							
12/3/91	B14137-1-5							ND <10
12/3/91	B14137-1-8							114
12/3/91	B14137-1-8D							123
12/3/91	B14137-1-10							ND <10
12/3/91	B14137-1-19							ND <10
12/3/91	GS14137-1-19							11.9
1/31/92	B14137-2-5							ND <10
1/31/92	B14137-2-10							ND <10
1/31/92	B14137-2-15							ND <10
1/31/92	B14137-2-19							ND <10
1/31/92	B14137-2-19D							ND <10
1/31/92	B14137-3-5							60*
1/31/92	B14137-3-10							ND <10
1/31/92	B14137-4-5							ND <10
1/31/92	B14137-4-15							ND <10
2/18/92	MW14137-1-5							ND <10
2/18/92	MW14137-1-10							ND <10
2/18/92	MW14137-1-25							ND <10
2/18/92	MW14137-2-5							ND <10
2/18/92	MW14137-2-5D							ND <10
2/18/92	MW14137-2-15							ND <10
2/18/92	MW14137-2-20							ND <10
2/18/92	MW14137-3-5							ND <10
2/18/92	MW14137-3-10							177
2/18/92	MW14137-3-10D							252
2/18/92	MW14137-3-15							52
2/18/92	MW14137-3-20						v	ND <10
UST Remov	al Results							
10/18/1996	14137-A-9'	7,900	ND < 10					
10/18/1996	14137-B-9'	10,000	ND < 10					
10/18/1996	14137-C-1.0'	ND < 10	ND < 10					

Notes:

 \ast - sample contained asphalt

-- - not analyzed

MCB - Marine Corps Base

mg/kg - milligrams per kilogram

ND - not detected above laboratory reporting limits

TPH-d - total petroleum hydrocarbons quantified as diesel

TPH-g - total petroleum hydrocarbons quantified as gasoline

TRPH - total recoverable petroleum hydrocarbons

UST - Underground Storage Tank

SITE INVESTIGATION STATIONARY LABORATORY ANALYTICAL RESULTS FOR SOIL UST SITE 14137, MCB CAMP PENDELTON, CALIFORNIA

TABLE 2-2

Component Analyzed	Method	Unit	PQL	MW14137-4 @ 5'	IW14137-4 @ 10'	IW14137-4 @ 15'	.14137-7 @ 5'	.14137-7 @ 10'	.14137-7 @ 15'	.14137-5 @ 5'	.14137-5 @ 10'	.14137-5 @ 15'	IW14137-5 @ 5'	fW14137-5 @ 10'	fW14137-5 @ 15'	.14137-6 @ 5'	.14137-6 @ 10'	.14137-6 @ 15'	IW14137-6 @ 5'	fW14137-6 @ 10'	IW14137-4A @ 10'	IW14137-4A @ 15'	MW14137-4A @ 20'
Date Collected	Method	Unit	FQL	11/4/98	11/4/98	11/4/98	11/5/98	11/5/98	11/5/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	3/11/00	3/11/00	3/11/00
Stationary Laboratory Analysis - TPH-d,	TPH-g, MTBE, BT	TEX		11/4/20	11/4/50	11/4/20	11/5/70	11/3/70	11/5/70	11/4/70	11/4/70	11/4/70	11/4/70	11/4/50	11/4/50	11/4/50	11/4/70	11/4/50	11/4/70	11/4/20	3/11/00	3/11/00	3/11/00
Dilution Factor (Gasoline, BTEX, & MTBE						5												1			200	1	1
Gasoline	M8015V	mg/kg	10																		300 ^(a)	4.1 ^(a)	0.2J ^(a)
Benzene	8020	mg/kg	5			ND <26												0.5J					
Ethylbenzene	8020	mg/kg	5			12J												1J					
Toluene	8020	mg/kg	5			91												2J					
o-Xylene	8020	mg/kg	5			7I												ND <5.2					
m/p-Xylene	8020	mg/kg	10			73 17J												2J					
	8020		10																				
Xylenes (Total) MTBE	8020	mg/kg	25															ND <26					
Dilution Factor (Diesel & Motor Oil)	0020	mg/kg	25			ND <130												1ND <20			10	1	1
Diesel	M8015E	mg/kg	10			730												ND <10			5260	50	26
Motor oil	M8015E M8015E	mg/kg	10			ND <52												ND <10			93J	4J	20 2J
Mobile Laboratory Analysis - TPH-d, TP			10			ND \JZ												ND <10			733	43	23
TPH-d			10	130 ^(b)	17 ^(b)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
TPH-g	CA DHS CA DHS	mg/kg	10 10	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND			
=		mg/kg		ND ND																			
MTBE	8020	mg/kg	0.1																				
Benzene	8020 8020	mg/kg	0.05 0.05	ND ND																			
Toluene	8020 8020	mg/kg	0.05	ND ND																			
Ethylbenzene Xylenes	8020	mg/kg	0.03	ND ND																			
Stationary Laboratory Results - Volatile		mg/kg	0.13	ND																			
Dilution Factor	Organic Compound	IS		10																	10	1	1
	8260B	ma/lra	100	ND <1100																	220J	69J	48J
Acetone Benzene	8260B	mg/kg	100 5	ND <1100 ND <55																	ND <57	ND <5.4	46J ND <5.2
Bromobenzene	8260B	mg/kg	<i>5</i>																		ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
Bromochloromethane	8260B	mg/kg	5 5	ND <55 ND <55																	ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
Bromodichloromethane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
Bromoform	8260B	mg/kg	5 5	ND <55																	ND <57 ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
Bromomethane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4 ND < 5.4	ND <5.2 ND <5.2
2-Butanone (MEK)	8260B	mg/kg	100	ND <1100																	66J	ND < 110	ND < 100
· · · · · · · · · · · · · · · · · · ·		mg/kg	5																				
n-Butylbenzene sec-Butylbenzene	8260B	mg/kg	5	ND <55																	ND <57	ND <5.4	ND <5.2
tert-Butylbenzene	8260B 8260B	mg/kg	5 5	ND <55																	24J ND <57	0.9J 0.9J	ND <5.2 ND <5.2
Carbon disulfide	8260B 8260B	mg/kg	5 5	ND <55 ND <55																	ND <57 ND <57	0.9J ND <5.4	ND < 5.2 ND < 5.2
Carbon distillide Carbon tetrachloride	8260B 8260B	mg/kg	5 5																		ND <57 ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
Chlorobenzene	8260B 8260B	mg/kg	5	ND <55 ND <55																	ND <57 ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
Chlorodibromomethane	8260B 8260B	mg/kg	5 5	II																	ND <57 ND <57	ND < 5.4 ND < 5.4	ND <5.2 ND <5.2
1,2-Dibromomethane (EDB)	8260B 8260B	mg/kg	5 5	ND <55																	ND <57 ND <57	ND <5.4 ND <5.4	ND <5.2 ND <5.2
Dibromomethane	8260B 8260B	mg/kg	5	ND <55																	ND <57 ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
1,2-Dichlorobenzene	8260B 8260B	mg/kg	5	ND <55 ND <55																	ND <57 ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
	8260B 8260B	mg/kg mg/kg	5 5	ND <55																	ND <57 ND <57	ND < 5.4 ND < 5.4	ND < 5.2 ND < 5.2
1,3-Dichlorobenzene																							

SITE INVESTIGATION STATIONARY LABORATORY ANALYTICAL RESULTS FOR SOIL UST SITE 14137, MCB CAMP PENDELTON, CALIFORNIA

TABLE 2-2

					_	_								_	_					_	10'	.5.	20'
				į,	10'	15'			_			_	Į,	10,	15'		-	_	Š	10'	<i>(a)</i>	(e) —	@
				<u>©</u>	©	©	5	10	15'	5	10'	15	<u>©</u>	©	<u>©</u>	5	10'	15	<u>©</u>	©	A	A (
				7-4	7-4	7-4	©	<u>©</u>	<u>@</u>	8	@	<u>©</u>	7-5	7-5	7-5	<u>@</u>	<u>@</u>	<u>@</u>	37-6	7-6	7-4	4-7	4-7
				413	413	413	7-78	7-78	7-78	37-5	37-5	37-5	4137.	4137	413	7-6	37-6	9-7:	413	4137.	4137	413	413
				№ 17	№ 1,	% 1,	413	413	413	413	413	413	×1,		×1,	413	413	413		№ 1,		¼	MW14137-4A
Component Analyzed	Method	Unit	PQL	MM	MW	¥	B1	B1	B1	B1	B 1	B1	Ž	MW	¥	B1	B1	B1	MW	¥	MW	¥	
Date Collected				11/4/98	11/4/98	11/4/98	11/5/98	11/5/98	11/5/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	3/11/00	3/11/00	3/11/00
Dichlorodiflouromethane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
1,1-Dichloroethane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
1,2-Dichloroethane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
1,1-Dichloroethene	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
cis-1,2-Dichloroethene	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
trans-1,2-Dichloroethene	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
1,2-Dichloropropane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
1,3-Dichloropropane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
2,2-Dichloropropane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
1,1-Dichloropropene	8260B	mg/kg	5	ND <55																	ND <57	ND <5.4	ND <5.2
cis-1,3-Dichloropropane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
trans-1,3-Dichloropropene	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
Ethylbenzene	8260B	mg/kg	5	43J																	22J	ND < 5.4	ND <5.2
Hexachlorobutadiene	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
Isopropylbenzene (Cumene)	8260B	mg/kg	5	9J																	14J	ND < 5.4	ND <5.2
p-Isopropyltoluene	8260B	mg/kg	5	80																	140	9	ND < 5.2
Methylene chloride	8260B	mg/kg	5	ND <55																	10 J	ND < 5.4	ND <5.2
4-Methyl-2-pentanone (MIBK)	8260B	mg/kg	50	ND <550																	ND <570	ND <54	ND <52
MTBE	8260B	mg/kg	10	ND <110																	ND <110	ND <11	ND <10
Naphthalene	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND < 5.2
n-Propylbenzene	8260B	mg/kg	5	19J																	27J	ND < 5.4	ND < 5.2
Styrene	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
1,1,1,2-Tetrachloroethane	8260B	mg/kg	5	ND <55																	ND <57	ND <5.4	ND <5.2
1,1,2,2-Tetrachloroethane	8260B	mg/kg	5	ND <55																	ND <57	ND <5.4	ND <5.2
Tetrachlorethene	8260B	mg/kg	5	ND <55																	ND <57	ND <5.4	ND <5.2
Toluene	8260B		5	9J																	ND <57	ND <5.4	ND <5.2
1,2,3-Trichlorobenzene	8260B	mg/kg	5	ND <55																	ND <57	ND <5.4 ND <5.4	ND <5.2
		mg/kg	5	II																			
1,2,4-Trichlorobenzene	8260B	mg/kg	5	ND <55																	ND <57	2J	ND <5.2
1,1,1-Trichloroethane	8260B	mg/kg	5	ND <55																	ND <57	ND <5.4	ND <5.2
1,1,2-Trichloroethane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
Trichloroethene	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
Trichloroflouromethane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND < 5.2
1,2,3-Trichloropropane	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
1,2,4-Trimethylbenzene	8260B	mg/kg	5	120																	260	6	ND <5.2
1,3,5-Trimethylbenzene	8260B	mg/kg	5	90																	25J	2J	ND < 5.2
Vinyl Chloride	8260B	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND < 5.2
o-Xylene	8260B	mg/kg	5	60																	24J	ND < 5.4	ND <5.2
m/p-Xylene	8260B	mg/kg	5	100																	18J	ND < 5.4	ND < 5.2
Xylenes (Total)	8260B	mg/kg	5	160																			ND <10.4

SITE INVESTIGATION STATIONARY LABORATORY ANALYTICAL RESULTS FOR SOIL UST SITE 14137, MCB CAMP PENDELTON, CALIFORNIA

TABLE 2-2

		**	200	MW14137-4 @ 5'	MW14137-4 @ 10'	W14137-4 @ 15'	14137-7 @ 5'	14137-7 @ 10'	14137-7 @ 15'	14137-5 @ 5'	14137-5 @ 10'	14137-5 @ 15'	W14137-5 @ 5'	W14137-5 @ 10'	W14137-5 @ 15'	14137-6 @ 5'	14137-6 @ 10'	14137-6 @ 15'	AW14137-6 @ 5'	.W14137-6 @ 10'	MW14137-4A @ 10'	W14137-4A @ 15'	MW14137-4A @ 20'
Component Analyzed Date Collected	Method	Unit	PQL	11/4/98	∑ 11/4/98	11/4/98	11/5/98	<u>m</u> 11/5/98	11/5/98	11/4/98	<u>m</u> 11/4/98	<u>m</u> 11/4/98	∑ 11/4/98	11/4/98	11/4/98	<u>m</u> 11/4/98	11/4/98	<u>m</u> 11/4/98	<u>≥</u> 11/4/98	<u>≥</u> 11/4/98	3/11/00	3/11/00	3/11/00
Stationary Laboratory Results - Polynucle	or Aromatic Uvdr	roorbons (DA	(П)	11/4/96	11/4/98	11/4/98	11/3/98	11/3/98	11/3/98	11/4/90	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/90	3/11/00	3/11/00	5/11/00
Dilution Factor	ai Aromane fiyur	local bolls (1 A	111)	10																	10	1	1
Acenaphthene	8310	mg/kg	50	ND <550																	ND <570	ND <54	ND <52
Acenaphthylene	8310	mg/kg	20	ND <220																	ND <230	ND <22	ND <21
Anthracene	8310	mg/kg	2	30																	55	0.6J	0.5J
Benz[a]anthracene	8310	mg/kg	2	40																	180	3	2
Benzo[a]pyrene	8310	mg/kg	2	ND <22																	ND <23	ND <2.2	ND <2.1
Benzo[b]fluoranthene	8310	mg/kg	2	ND <22																	ND <23	ND <2.2	ND <2.1
Benzo[g,h,i]perylene	8310	mg/kg	2	ND <22																	ND <23	ND <2.2	ND <2.1
Benzo[k]flouranthene	8310	mg/kg	2	ND <22																	ND <23	ND <2.2	ND <2.1
Chrysene	8310	mg/kg	2	30																	54	0.5J	0.4J
Dibenz[a,h]anthracene	8310	mg/kg	5	ND <55																	ND <57	ND < 5.4	ND <5.2
Flouranthene	8310	mg/kg	2	120																	ND <23	ND <2.2	ND <2.1
Flourene	8310	mg/kg	2	58																	ND <23	ND <2.2	ND <2.1
Indeno[1,2,3-cd]pyrene	8310	mg/kg	2	ND <22																	ND <23	ND <2.2	ND <2.1
Naphthalene	8310	mg/kg	50	ND <550																	250J	ND <54	ND <52
Phenanthrene	8310	mg/kg	2	110																	1240	11	12
Pyrene	8310	mg/kg	2	130																	ND <23	ND <2.2	ND <2.1
Stationary Laboratory Results - SPLP TP	H-d, TPH-g, MTB	E, BTEX																					
Dilution Factor (Gasoline, BTEX, & MTBE)																					10	1	
Gasoline	8021B	mg/L	0.05																		17.5 ^(a)	$0.64^{(a)}$	
Benzene	8021B	mg/L	0.5																		ND <5	0.1J	
Toluene	8021B	mg/L	0.5																		ND <5	0.4J	
Ethylbenzene	8021B	mg/L	0.5																		ND <5	ND < 0.5	
o-Xylene	8021B	mg/L	0.5																		ND <5	0.4J	
m/p-Xylene	8021B	mg/L	1																		ND <10	0.7J	
MTBE	8021B	mg/L	5																		ND <50	2J	
Dilution Factor (Diesel & Motor Oil)		ū																			10	1	
Diesel	M8015E	mg/L	0.5																		72	7.8	
Motor oil	M8015E	mg/L	0.5																		2J	0.3J	

SITE INVESTIGATION STATIONARY LABORATORY ANALYTICAL RESULTS FOR SOIL UST SITE 14137, MCB CAMP PENDELTON, CALIFORNIA

TABLE 2-2

Description					MW14137-4 @ 5'	/W14137-4 @ 10'	W14137-4 @ 15'	4137-7 @ 5'	4137-7 @ 10'	4137-7 @ 15'	4137-5 @ 5'	4137-5 @ 10'	4137-5 @ 15'	W14137-5 @ 5'	.W14137-5 @ 10'	W14137-5 @ 15'	4137-6 @ 5'	4137-6 @ 10'	4137-6 @ 15'	W14137-6 @ 5'	.W14137-6 @ 10'	W14137-4A @ 10'	W14137-4A @ 15'	AW 14137-4A @ 20'
Springer Solution Solution	Component Analyzed	Method	Unit	PQL	M	¥	¥	B1	B1	B1		B1	B1	Ž	¥	¥	B1	B1	B 1	¥	¥	Ă	¥	M
National Prince 1968					11/4/98	11/4/98	11/4/98	11/5/98	11/5/98	11/5/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	3/11/00	3/11/00	3/11/00
Assence Spring mgL 10		latile Organics			I																			
Source Staffin mig_L S		02.600		100																		-	1	
Storage Characteristics Stoff mgL S																								
From purchase \$2068 mgl. 5				-																				
Sementemon S208 mg/L 5				-																				
Benomichina Styfill mgL 5				-																				
Bottomerhane SL5698 mg/L 5 0 0 0 0 0 0 0 0 0				-																				
2-Brunche (MEK) Sh/96 mgL 100				-																				
Betysbearcene 8296 mg.L 5				-																				
Sec-Baylseneare																								
Int. Bayl-browne 8,2008 mg/L 5	1																							
Carbon termscharies \$2698 mg/l 5	The state of the s			5																				
Cacho tetrachloride	■			5																		ND <5	ND <5	
Chlorochazene R2008 mg/L 5	Carbon disulfide		mg/L	5																		ND <5	ND <5	
Chlorothane \$260B mg/L 5	Carbon tetrachloride		mg/L	5																		ND <5	ND <5	
Chlorodrame	Chlorobenzene	8260B	mg/L	5																		ND <5	ND <5	
Chloromethane 8260B mg/L 5	Chlorodibromomethane	8260B	mg/L	5																		ND <5	ND <5	
Chloromethane 8260B mg/L 5	Chloroethane	8260B	mg/L	5																		ND <5	ND <5	
2-Chlorotoluene 8260B mg/L 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5 ND < 5	Chloroform	8260B	mg/L	5																		ND <5	ND <5	
2-Chlorotoluene 8260B mg/L 5	Chloromethane	8260B	mg/L	5																		ND <5	ND <5	
4-Chlorotolene \$2.608 mg/L 5	2-Chlorotoluene	8260B		5																		ND <5	ND <5	
1,2-Dibromos-chtoropropane (DB) 8260B mg/L 5	4-Chlorotoluene	8260B		5																		ND <5	ND <5	
1,2-Dibromomethane (EDB) 8260B mg/L 5				5																			ND <5	
Dibromomethane R260B mg/L 5				5																				
1,2-Dichlorobenzene 8260B mg/L 5		8260B		5																		ND <5	ND <5	
1,3-Dichlorobenzene 8260B mg/L 5				5																				
1,4-Dichloroperage 8260B mg/L 5				5																				
Dichlorodiflouromethane 8260B mg/L 5				5																				
1,1-Dichloroethane 8260B mg/L 5				5																				
1,2-Dichloroethane 8260B mg/L 5				5																				
1,1-Dichloroethene 8260B mg/L 5				-																				
cis-1,2-Dichloroethene 8260B mg/L 5				_																				
trans-1,2-Dichloroethene 8260B mg/L 5				_																				
1,2-Dichloropropane 8260B mg/L 5				-																				
1,3-Dichloropropane 8260B mg/L 5				-					- -	- -			- -	_ -		- -	_ <u>-</u>		- -					
2,2-Dichloropropane 8260B mg/L 5				_																				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			шg/L m≃/т	-																				
cis-1,3-Dichloropropane 8260B mg/L 5			mg/L	-																				
trans-1,3-Dichloropropene 8260B mg/L 5			mg/L	-																				
Ethylbenzene 8260B mg/L 5				5																				

SITE INVESTIGATION STATIONARY LABORATORY ANALYTICAL RESULTS FOR SOIL UST SITE 14137, MCB CAMP PENDELTON, CALIFORNIA

TABLE 2-2

Component Analyzed	Method	Unit	PQL	MW14137-4 @ 5'	MW14137-4 @ 10'	MW14137-4 @ 15'	B14137-7 @ 5'	B14137-7 @ 10'	B14137-7 @ 15'	B14137-5 @ 5'	B14137-5 @ 10'	B14137-5 @ 15'	MW14137-5 @ 5'	MW14137-5 @ 10'	MW14137-5 @ 15'	B14137-6 @ 5'	B14137-6 @ 10'	B14137-6 @ 15'	MW14137-6 @ 5'	MW14137-6 @ 10'	MW14137-4A @ 10'	MW14137-4A @ 15'	MW14137-4A @ 20'
Date Collected				11/4/98	11/4/98	11/4/98	11/5/98	11/5/98	11/5/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	3/11/00	3/11/00	3/11/00
Hexachlorobutadiene	8260B	mg/L	5																		ND <5	ND <5	
Isopropylbenzene (Cumene)	8260B	mg/L	5																		1J	ND <5	
p-Isopropyltoluene	8260B	mg/L	5																		15	0.6J	
Methylene chloride	8260B	mg/L	5																		1J	0.8J	
4-Methyl-2-pentanone (MIBK)	8260B	mg/L	50																		ND <50	ND <50	
MTBE	8260B	mg/L	10																		ND <10	ND <10	
Naphthalene	8260B	mg/L	5																		ND <5	ND <5	
n-Propylbenzene	8260B	mg/L	5																		ND <5	ND <5	
Styrene	8260B	mg/L	5																		ND <5	ND <5	
1,1,1,2-Tetrachloroethane	8260B	mg/L	5																		ND <5	ND <5	
1,1,2,2-Tetrachloroethane	8260B	mg/L	5																		ND <5	ND <5	
Tetrachlorethene	8260B	mg/L	5																		ND <5	ND <5	
Toluene	8260B	mg/L	5																		ND <5	ND <5	
1,2,3-Trichlorobenzene	8260B	mg/L	5																		ND <5	ND <5	
1,2,4-Trichlorobenzene	8260B	mg/L	5																		ND <5	ND <5	
1,1,1-Trichloroethane	8260B	mg/L	5																		ND <5	ND <5	
1,1,2-Trichloroethane	8260B	mg/L	5																		0.8J	ND <5	
Trichloroethene	8260B	mg/L	5																		ND <5	ND <5	
Trichloroflouromethane	8260B	mg/L	5																		ND <5	ND <5	
1,2,3-Trichloropropane	8260B	mg/L	5																		ND <5	ND <5	
1,2,4-Trimethylbenzene	8260B	mg/L	5																		28	0.7J	
1,3,5-Trimethylbenzene	8260B	mg/L	5																		3J	ND <5	
Vinyl Chloride	8260B	mg/L	5																		ND <5	ND <5	
o-Xylene	8260B	mg/L	5																		2J	ND <5	
m/p-Xylene	8260B	mg/L	5																		2J	ND <5	

TABLE 2-2

SITE INVESTIGATION STATIONARY LABORATORY ANALYTICAL RESULTS FOR SOIL UST SITE 14137, MCB CAMP PENDELTON, CALIFORNIA

				14137-4 @ 5'	4137-4 @ 10'	4137-4 @ 15'	37-7 @ 5'	37-7 @ 10'	37-7 @ 15'	37-5 @ 5'	37-5 @ 10'	37-5 @ 15'	4137-5 @ 5'	14137-5 @ 10'	4137-5 @ 15'	37-6 @ 5'	37-6 @ 10'	37-6 @ 15'	4137-6 @ 5'	14137-6 @ 10'	4137-4A @ 10'	4137-4A @ 15'	4137-4A @ 20'
Component Analyzed	Method	Unit	PQL	MW1	MW1	IW1	31413	31413	31413	31413	31413	31413	TW1,	TW1,	IW1	31413	31413	31413	TW1	TW1	AW1,	JW1	MW14137.
Date Collected	111cmou	Cint	TQL	11/4/98	11/4/98	11/4/98	11/5/98	11/5/98	11/5/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	11/4/98	3/11/00	3/11/00	3/11/00
Stationary Laboratory Results - SPLP PA	Hs			22, 11, 2																	0, 2 2, 0 0	27 2 27 3 3	
Dilution Factor																					10	1	
Acenaphthene	8310	mg/L	5																		ND <50	ND <5	
Acenaphthylene	8310	mg/L	2																		ND <20	ND <2	
Anthracene	8310	mg/L	0.2																		0.4J	ND < 0.2	
Benz[a]anthracene	8310	mg/L	0.2																		3	ND < 0.2	
Benzo[a]pyrene	8310	mg/L	0.2																		ND <2	ND < 0.2	
Benzo[b]fluoranthene	8310	mg/L	0.2																		ND <2	ND < 0.2	
Benzo[g,h,i]perylene	8310	mg/L	0.2																		ND <2	ND < 0.2	
Benzo[k]flouranthene	8310	mg/L	0.2																		ND <2	ND < 0.2	
Chrysene	8310	mg/L	0.2																		0.8J	ND < 0.2	
Dibenz[a,h]anthracene	8310	mg/L	0.5																		ND <5	ND < 0.5	
Flouranthene	8310	mg/L	0.2																		ND <2	ND < 0.2	
Flourene	8310	mg/L	1																		ND <10	ND <1	
Indeno[1,2,3-cd]pyrene	8310	mg/L	0.2																		ND <2	ND < 0.2	
Naphthalene	8310	mg/L	5																		ND <50	ND <5	
Phenanthrene	8310	mg/L	1																		23	ND <1	
Pyrene	8310	mg/L	0.2																		ND <2	ND < 0.2	
Stationary Laboratory Results - Physical																							
Heterotrophic Plate Count	SM9215	cfu/10g	1	1,800																			
Hydrocarbon Degrader	SM9215A	MPN/g		23																			
Moisture (Percent in Soil)	ASTM-D2216	%Moisture	0.5	8.4																			
pH	9045	pH unit	0.01	7.66																			
Ammonia (NH ₄)	350.2	mg/kg	5	39																			
Nitrate (NO ₃) as N	SM4500NO3D	mg/kg	5	4J																			
Eh	ASTM1498	mV	1	336 ^(c)																			
Orthophosphate	365.2	mg/kg	0.2	119																			
Sulfate SO ₄	375.4	mg/kg	10	6.0J																			
Iron, Fe	6010	mg/kg	3	14,800																			
Manganese, Mn	6010	mg/kg	0.5	223																			

Notes:

-- - Not analyzed

µg/kg - micrograms per kilogram

- (a) Not a typical gas pattern. Most of the peaks in the chromatogram correspond to the heavier portion of the chain.
- (b) Diesel range organics not identified as diesel
- ASTM American Society for Testing and Materials
- BTEX benzene, toluene, ethylbenzene, total xylenes
- CA DHS California Department of Health Services
- cfu/g colony forming units per gram
- J reported between PQL and MDL

MCB - Marine Corps Base

MDL - Method Detection Limit

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

MTBE - methyl ter-butyl ether

mV - millivolts

ND - Not found above the detection limit

PAH - polynuclear aromatic hydrocarbon

PQL - Practical Quantitation Limit

SPLP - Synthetic Precipitation Leachate Procedure

TPH-d - total petroleum hydrocarbons quantified as diesel

TPH-g - total petroleum hydrocarbons quantified as gasoline

TABLE 2-3

SUMMARY OF HISTORICAL GROUNDWATER SAMPLING RESULTS, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

													Ι	Detected Vo	OCs (µg/	/L)									Detected P	PAHs (µg/L)
Well ID	Date Sampled	Sample ID	P-HdL (mg/L)	5-HdT (mg/L)	(mg/L)	Benzene	Toluene	Ethylbenzene	Xylenes (total)	МТВЕ	Acetone	Bromodichloromethane	Chloroform	Chlorodibromomethane	Dibromodichloromethane	Isopropylbenzene	N-Butylbenzene	sec-Butylbenzene	Isopropylbenzene	Naphthalene	Tetrachloroethene	Trichloroethene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Naphthalene	Pyrene
1998 Site In		Sumple 12	, ₂ ,	, <u>U</u>	()		_		, ,		,							U .					, ,			
MW1	T	sampled																								
MW2	Not	sampled																								
MW3	Not	sampled																								
MW4	12/01/98	MW4	10	0.63 ^(a)	ND <5	7 J	2 J	8 J	20	431	130 J	ND <10	ND <10	ND <10		2 J	3 J	0.8 J	2 J	20	3 J	5 J	10	5 J	9	0.5
MW5	12/01/98	MW5	ND < 0.5		ND <0.5	ND <5	ND <5	ND <5	ND <5	4 J	9 J	ND <5	0.6 J	ND <5		ND <5	ND <5	ND <5	ND <5	ND <5	2 J	ND <5	ND <5	ND <5	ND <5	ND <0.2
MW6	12/01/98	MW6	ND < 0.5		ND < 0.5	ND <5	ND <5	ND <5	ND <5	ND <10	ND <100	0.9 J	1 J	0.5 J		ND <5	ND <5	ND <5	ND <5	ND <5	4 J	ND <5	ND <5	ND <5	ND <5	ND <0.2
March 2006	Groundwater	r Sampling Event																								
MW1	03/14/06	0004-120	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW2	03/14/06	0004-121	2.2			ND	ND	ND	ND	9.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW3	03/14/06	0004-123	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW4			Well aband	doned		,			,									,		•		T	1			
MW5	03/14/06	0004-122	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW6	03/14/06	0004-119	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW7	03/14/06	0004-124	0.25			ND	ND	ND	ND	0.41 J	ND	0.3 J	ND	ND	0.32 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Notes		0004-125 (Dup)	0.26			ND	ND	ND	ND	0.44 J	ND	0.31 J	ND	ND	0.33 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

(a) - Not a typical gas pattern. Most peaks on chromatogram correspond to heavier portion of carbon chain.

-- - not analyzed

 $\mu g/L$ - micrograms per liter

Dup - duplicate sample

J - estimated value

MCB - Marine Corps Base

mg/L - milligrams per liter

MTBE - methyl tert-butyl ether

ND - not detected above project reporting limits

PAH - polynuclear aromatic hydrocarbon

TPH-d - total petroleum hydrocarbons quantified as diesel

TPH-g - total petroleum hydrocarbons quantified as gasoline

TPH-mo - total petroleum hydrocarbons quantified as motor oil

UST - Underground Storage Tank

VOC - volatile organic compound

TABLE 2-4

SUMMARY OF SOIL EXCAVATION CONFIRMATION SAMPLE RESULTS, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

Sample Number	Date Sampled	Location	Depth	TPH-d (mg/kg)	SPLP/TPH-d (mg/L)	Detected SPLP/VOCs (μg/L)	Detected SPLP/PAHs (μg/L)	Total Aerobic Heterotrophic Bacteria (cfu/g)	Total Diesel Oxidizing Bacteria (cfu/g)
0004-073	2/3/06	East sidewall	10	ND					
0004-074	2/3/06	West Sidewall (shallow)	4	780					
0004-075	2/3/06	West sidewall (deep)	13	1,600	5	Ethylbenzene 0.51 Xylenes 0.83J	Acenaphthene 1.3 Fluorene 4 Naphthalene 7.7 Phenanthrene 6.2	2.50E+03	1.66E+03
0004-076	2/3/06	North sidewall	10	53					
0004-077	2/3/06	South sidewall (shallow)	4	ND					
0004-078	2/3/06	South sidewall (deep)	12	6,700	30	Ethylbenzene 5.3 Xylenes 6.8 Toluene 0.65	Acenaphthene 6.3J Fluorene 23 Naphthalene 65 Phenanthrene 43 Pyrene 2.2J		
0004-079	2/3/06	South sidewall (dup) (deep)	12	6,200	34	Ethylbenzene 4.8 Xylenes 7.9 Toluene 0.63	Acenaphthene 4.9J Fluorene 16J Naphthalene 54 Phenanthrene 25		
0004-080	2/3/06	Excavation bottom (north side)	17	ND					
0004-081	2/3/06	Excavation bottom (south side)	17	14					

Notes:

-- - not analyzed

μg/L - micrograms per liter

cfu/g - colony forming units per gram

dup - field duplicate sample

J - estimated value; value falls between the method detection limit and the project reporting limit

MCB - Marine Corps Base

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

ND - not detected above laboratory reporting limits

PAH - polynuclear aromatic hydrocarbon

SPLP - Synthetic Precipitation Leaching Procedure

TPH-d - total petroleum hydrocarbons quantified as diesel

VOC - volatile organic compound

TABLE 2-5

SUMMARY OF EXCAVATION FILL MATERIAL SAMPLE RESULTS, UST SITE 14137, MCB CAMP PENDLETON, CALIFOFRNIA

										Tit	le 22 Met	tals									
Sample ID	Date Sampled	TPH-d	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Mercury	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Asbestos	pН
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	percent	N/A
0004-070	1/12/2006																			ND	
0004-071	1/12/2006																			ND	
0004-072	1/17/2006	ND	ND	2.07	92.2	0.402J	0.225J	23.5	5.78	17.7	7.39	1.15J	ND	16.1	0.784J	0.624J	7.23	33.1	49.2		8.11
EPA Residen	tial PRGs	N/A	31	0.0062	5400	150	37	30	900	3,100	150	390	23	160	390	390	5.2	78	23,000		

Notes:

-- - not analyzed

N/A - not applicable

EPA - U.S. Environmental Protection Agency

J - estimated value; value falls between the method detection limit and the project reporting limit

MCB - Marine Corps Base

mg/kg - milligrams per kilogram

ND - not detected above laboratory reporting limits

PRG - Preliminary Remediation Goal

TPH-d - total petroleum hydrocarbons quantified as diesel

TABLE 2-6

SUMMARY OF HISTORICAL GROUNDWATER ELEVATIONS, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

Monitoring Well ID	Well Screen Interval (feet btoc)	Reference Point (toc) Elevation (feet amsl)	Date Measured	Depth to Water (feet btoc)	Groundwater Elevation (feet amsl)
MW1	10 - 20 (1)	284.56	12/1/1998	6.19	278.37
IVI VV I	10 - 20	204.30	3/14/2006	6.84	277.72
MW2	10 - 20 (1)	284.02	12/1/1998	6.74	277.28
IVI VV Z	10 - 20	264.02	3/14/2006	7.29	276.73
MW3	39,010.00	282.76	12/1/1998	7.38	275.38
IVI VV 3	39,010.00	202.70	3/14/2006	7.66	275.10
MW5	5 - 15	282.04	12/1/1998	34.97	247.07
IVI VV S	3 - 13	282.04	3/14/2006	7.70	274.34
MXXIC	5 15	294.90	12/1/1998	6.58	278.31
MW6	5 - 15	284.89	3/14/2006	6.74	278.15
MW7	5 - 15	283.13	Not installed		
IVI VV /	3 - 13	203.13	3/14/2006	7.82	275.31

Notes:

(1) assumed similar depths to MW3

amsl - above mean sea level

btoc - below top of casing

MCB - Marine Corps Base

N/A - not available

toc - top of casing

TABLE 4-1

PROPOSED CLEANUP OBJECTIVES FOR CONTAMINANTS, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

Constituent	Groundwater	Soil
TPH-d	100 μg/L ^(a)	SPLP <groundwater objective<="" td=""></groundwater>
Benzene	1.0 µg/L ^(b)	SPLP <groundwater objective<="" td=""></groundwater>
Toluene	150 μg/L ^(b)	SPLP <groundwater objective<="" td=""></groundwater>
Ethylbenzene	680 μg/L ^(b)	SPLP <groundwater objective<="" td=""></groundwater>
Total Xylenes	1,750 μg/L ^(b)	SPLP <groundwater objective<="" td=""></groundwater>
Benzo[a]pyrene	0.2 μg/L ^(b)	SPLP <groundwater objective<="" td=""></groundwater>
Phenanthrene	1.0 μg/L ^(b)	SPLP <groundwater objective<="" td=""></groundwater>

Notes:

 $\mu g/L$ – micrograms per liter

MCB - Marine Corps Base

SPLP - Synthetic Precipitation Leaching Procedure

TPH-d - total petroleum hydrocarbons quantified as diesel

⁽a) Secondary taste and odor threshold (b) Maximum Contaminant Levels

TABLE 5-1

SUMMARY OF SCREENING OF REMEDIAL TECHNOLOGIES FOR SOIL, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

General Response Actions	Remedial Technologies	Process Options	Effectiveness	Implementability	Cost	Comments
Active Remediation	In situ biological treatment.	Bioventing/Biosparging: Introduce oxygen into the impacted soils in both the vadose zone and saturated zone (most of the remaining contamination is below groundwater) to increase the biological activity of native microorganisms.	Moderate: Oxygen is typically the limiting factor for aerobic bioremediation, and adding oxygen has been shown to be effective to reduce concentrations of petroleum contaminants adsorbed to soil particles both above and below the water table. However, during groundwater sampling and soil excavation activities, groundwater recharge was very slow, suggesting that soil permeabilities are low, which will inhibit the effectiveness of bioventing/biosparging.	Moderate: Bioventing/biosparging are conventional, well-known technologies. However, bioventing/biosparging in soils with low permeabilities would potentially require numerous injection wells on a tight grid pattern.	Moderate: Depends on the number of injection wells required and the length of time it would take for contaminant levels to drop in the low-permeability soil. It is conservatively assumed that 5+ years of bioventing/biosparging may be required.	Eliminated: Even though bioventing/biosparging is an effective <i>in situ</i> remedial alternative, it is eliminated due to the relatively low volume of hydrocarbon contamination left (estimated 50 cubic yards) and the low-permeability soils. With the low-permeability soils, implementing bioventing/biosparging will likely be difficult, and may not be very effective.
Active Remediation	Removal.	Excavation/Disposal: Excavation with off- site disposal of remaining impacted soils in both the vadose zone and the saturated zone.	High: Provides long-term effectiveness and permanence. Provides protection of human health and the environment by reducing or eliminating the volume of contaminated soils.	Difficult: Excavation is a conventional and well-established technology; however, the remaining impacted soils are located beneath and Building 14137. Extensive shoring and building support would be required.	High: An extensive effort would be required to excavate contaminated soil below groundwater beneath Building 14137. Extensive shoring and building support would be required.	Retained: Even though excavation would be difficult and expensive to implement, it is considered the best active remedial alternative available for the site.

TABLE 5-1

SUMMARY OF SCREENING OF REMEDIAL TECHNOLOGIES FOR SOIL, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

General Response Actions	Remedial Technologies	Process Options	Effectiveness	Implementability	Cost	Comments
Active Remediation	In situ chemical treatment.	Chemical oxidation: Introduce a chemical oxidant to either destroy or degrade contaminants.	High: Where implementable, this technology has been shown to remediate hydrocarbons in soil in both the vadose zone and the saturated zone. The oxidants used are readily available and treatment time is usually measured in months, as opposed to years.	Difficult: Based on the presence of low-permeability soils, which will inhibit the oxidants to readily infiltrate the formation. A pilot test would be recommended. In addition, this technology is not commonly recommended for impacted soils near buildings due to potential	Moderately high: Potentially extensive drilling because of low-permeability soils and extensive monitoring activities because of Building 14137 would increase costs.	Eliminated: Based on the low-permeability soils, this technology may be difficult to implement or potentially not implementable at all. The low-permeability soils and adjacent Building 14137 are not well-suited for <i>in situ</i> chemical oxidation.
				exothermic reactions.		

TABLE 5-1

SUMMARY OF SCREENING OF REMEDIAL TECHNOLOGIES FOR SOIL, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

General Response Actions	Remedial Technologies	Process Options	Effectiveness	Implementability	Cost	Comments
No Further	Not applicable.	Not applicable.	High:	Easy:	Low:	Retained:
Action			Natural attenuation has been shown to be effective at petroleum sites for the long-term, permanent removal of hydrocarbon contaminants. Impacted soils both above and below groundwater were removed to the extent practical, and an estimated 50 cubic yards of hydrocarbon-impacted soil remain on site. Since data indicate that total aerobic heterotrophic bacteria and total diesel-oxidizing bacteria are naturally present in soil at levels above those considered optimal (EPA, 1995), it is believed natural attenuation will occur at the site.	No additional soil remedial activities would be performed.	Since there would be no additional soil remediation, there would no additional soil remediation costs. The only cost would be associated with abandoning the groundwater monitoring wells after regulatory site closure.	It is believed that the relatively low volume (50 cubic yards) of remaining petroleum-impacted soils (in both the vadose zone and the saturated zone) will attenuate naturally, especially since total aerobic heterotrophic bacteria and total diesel-oxidizing bacteria are naturally present at the site at levels above those considered optimal (EPA, 1995).

Notes:

EPA – U.S. Environmental Protection Agency MCB – Marine Corps Base

TABLE 5-2

SUMMARY OF SCREENING OF REMEDIAL TECHNOLOGIES FOR GROUNDWATER, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

General Response Actions	Remedial Technologies	Process Options	Effectiveness	Implementability	Cost	Comments	
No Further Action	Not	Not applicable.	High:	Easy:	Low:	Retained:	
	applicable.		Hydrocarbon constituents are readily biodegradable and the nearest municipal supply well is 1.5 miles away. Analytical data indicate that hydrocarbondegrading bacteria are present in aquifer soils at levels above those considered optimal by the EPA.	No remedial activities would be performed. Site closure would be complete after the destruction of the existing groundwater monitoring wells.	Costs to destroy existing wells would be relatively low.	Assumes site closure would be considered appropriate under existing conditions.	
Limited Action	Remediation	Groundwater	High:	Moderately easy:	Moderate:	Retained:	
	by monitored natural attenuation.	monitoring: Groundwater monitoring program to verify that contaminant levels are stable or decreasing.	Hydrocarbon constituents are readily biodegradable, and the nearest municipal supply well is 1.5 miles away. Analytical data indicate that hydrocarbondegrading bacteria are present in aquifer soils at levels above those considered optimal by the EPA.	Consists of periodic groundwater monitoring to assess contaminant disappearance.	It is assumed that a 1-year quarterly monitoring program would be sufficient to evaluate seasonal changes and develop a high degree of confidence in the sampling data.	Relatively easy to implement.	

TABLE 5-2

SUMMARY OF SCREENING OF REMEDIAL TECHNOLOGIES FOR GROUNDWATER, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

General Response Actions	Remedial Technologies	Process Options	Effectiveness	Implementability	Cost	Comments	
Active	In situ	Biosparging:	Moderate:	Moderate:	Moderate:	Eliminated:	
Remediation biological Introduce oxygen into			Oxygen is typically the limiting factor for aerobic bioremediation, and adding oxygen has been shown to be effective to reduce concentrations of petroleum contaminants below the water table. However, during groundwater sampling and soil excavation activities, groundwater recharge was slow, indicating that soil permeabilities are low, which will inhibit the effectiveness of biosparging.	Biosparging is a conventional, well-known technology. However, biosparging in soils with low permeabilities would potentially require numerous injection wells on a tight grid pattern.	Depends on the number of injection wells required and the length of time it would take for contaminant levels to drop in the low-permeability soil. It is conservatively assumed that several years of biosparging may be required.	Even though biosparging is an effective <i>in situ</i> remedial alternative, it is eliminated due to the relatively low levels of hydrocarbon contamination left in groundwater and the low-permeability aquifer. With the low-permeability soils, implementing biosparging will likely be difficult.	
Active	In situ	Addition of ORC to the	High:	Moderate:	Moderately high:	Eliminated:	
Remediation	ORC is a patented factor formulation of and act magnesium peroxide shown that produces a slow, sites. sustained source of which oxygen in groundwater, which enhances the provide ability of indigenous molecumicroorganisms to into the degrade fuel diffus hydrocarbons.		Oxygen is typically the limiting factor for aerobic bioremediation, and adding oxygen has been shown to be effective at similar sites. Contrary to biosparging, which relies on pressure to push air into the groundwater, ORC provides high concentrations of molecular oxygen that migrate into the contaminated aquifer via diffusion, and thus is not as restricted by low-permeability soils as biosparging.	ORC is applied to the subsurface via push-point injection.	Costs include purchasing ORC and applying it to the subsurface, with periodic groundwater monitoring. Multiple injections would likely be required.	The effort and costs are not justified based on the low-permeability soils and the low potential for adverse impacts from the site to sensitive receptors or nearby water resources (refer to Section 3.3).	

TABLE 5-2

SUMMARY OF SCREENING OF REMEDIAL TECHNOLOGIES FOR GROUNDWATER, UST SITE 14137, MCB CAMP PENDLETON, CALIFORNIA

General Response Actions	Remedial Technologies	Process Options	Effectiveness	Implementability	Cost	Comments
Active	In situ	Chemical oxidation:	Moderate to high:	Difficult:	Moderate to high:	Eliminated:
Remediation	chemical treatment.	Introduce a chemical oxidant into the saturated zone either to destroy or degrade contaminants.	Technology has been shown to remediate hydrocarbons in groundwater. The oxidants used are readily available, and treatment time is usually measured in months as opposed to years.	Impacted saturated soils have low permeability. Also, this technology is not recommended near buildings due to potential exothermic reactions.	Potentially extensive drilling (due to low permeability soils) and monitoring activities would increase costs.	The effort and costs are not justified based on the low-permeability soils and the low potential for adverse impacts from the site to sensitive receptors or nearby water resources (refer to Section 3.3).
Active	Ex situ pump	Groundwater	Low:	Moderate:	Very high:	Eliminated:
Remediation	and treat.	Extraction: Groundwater extraction coupled with adsorption/destruction processes such as air stripping, or granular activated carbon and reintroduction of treated water back into the aquifer.	Readily capable of removing contaminants from extracted water. However, hydrocarbon compounds typically adsorb strongly to soil particles, necessitating system operation over an extensive period of time, and disproportionately large groundwater extraction volumes.	Ex situ pump and treat is a conventional and established technology; however, an extended period of extraction would likely be required based on the low permeability of the aquifer material.	High capital and O&M costs. Involves system operation over a potentially long period of time, transport of waste off site, and associated permitting.	Low effectiveness and very high cost eliminate pump and treat as a feasible option.

Notes:

EPA – U.S. Environmental Protection Agency

MCB – Marine Corps Base

O&M – operation and maintenance

ORC – Oxygen Release Compound

FIGURES

为主管工作数。但是被数据建筑大学工作,也是最多,是有点是一点的主要的一种特殊的大大的。由于主管工作数(在主管工程建筑主要数据大学工作,并且在基础上,并不是在一种

APPENDIX A WELL PERMIT DOCUMENTATION

April 27, 2006

Monitoring Well Permit Clerk Site Assessment and Mitigation Program County of San Diego, Department of Environmental Health P.O. Box 129261 San Diego, CA 92112-9261

Subject:

Monitoring Well Destruction and Installation Notification, UST Sites 14131,

14137, Marine Corps Base (MCB) Camp Pendleton, California

Reference:

Permit No. LMON 103667

Well Permit Clerk:

Per your request, Tetra Tech EC is submitting the attached document in fulfillment of the conditions of monitoring well installation permit number LMON 103667. Documentation of the well destruction was previously submitted. The permit was issued on January 6, 2006, and the County was given 48 hours notice prior to commencement of the work of each phase of work. The work was conducted for the following UST Sites:

Property Owner:

United States Marine Corps

Site Address:

UST Sites 14131, 14137

14 Area, MCB Camp Pendleton, California 92055

Contact Person:

Mr. Chet Storrs

RCRA Division Head

On February 21, 2006, 2 groundwater monitoring wells were installed in the 14 area of MCB Camp Pendleton; one at site 14131, and one at adjacent site 14137. The following volumes and materials were used in the construction of each of the wells:

Boring/ Well	Filter Pack #2/16 sand (cubic feet)	Transition Seal Bentonite chips (cubic feet)	Concrete Completion (cubic feet)
14131-MW7	3	1	1
14137-MW7	3	1	l

The attached documents include boring/monitoring well logs with well completion information, a signed and stamped Registered Geologist certification letter for the boring/monitoring well logs, and a well location map.

In addition, unfortunately the four (4) well installations at UST Site 1441 included on the permit have been postponed. A request for permit extension for these wells will soon follow.

If you have any questions regarding this matter, please contact the undersigned.

Sincerely, Tetra Tech EC

Mark Cutler, RG

Senior Supervising Geologist

Attachments: Copy of Permit Location Map Registered Geologist Certification Letter Boring Logs

PERMIT #LMON103667 A.P.N. #101-520-14-00 EST #H05939-266/267/306

COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH LAND AND WATER QUALITY DIVISION MONITORING WELL PROGRAM

MONITORING WELL AND BORING CONSTRUCTION AND DESTRUCTION PERMIT

SITE NAME: BUILDINGS 14137 14131, 1441

SITE ADDRESS: AREA 14, MARINE CORPS BASE, CAMP PENDLETON

PERMIT TO: INSTALL 6 & DESTROY 5 GROUNDWATER MONITORING WELLS

PERMIT APPROVAL DATE: JANUARY 6, 2006

PERMIT EXPIRES ON: MAY 6, 2006

RESPONSIBLE PARTY: U.S. MARINE CORPS, CAMP PENDLETON

PERMIT CONDITIONS:

- 1. Each of the monitoring wells must be constructed with a minimum annular seal of 5 feet and a maximum screened interval of 15 feet.
- 2. Contact the Regional Water Quality Control Board for their comments and concerns prior to commencing field activities.
- 3. Wells must have a minimum 3-foot concrete surface seal. The surface seal shall consist of concrete able to withstand the maximum anticipated load without cracking or deteriorating. The concrete should meet Class A specifications of a minimum 4000-pound compressive strength.
- 4. For the well destructions, all material within the original borehole, which includes the casing, filterpack and annular seal, must be removed. The borehole must be completely filled with an approved sealing material as specified in Department of Water Resources Bulletin 74-90.
- 5. All water and soil resulting from the activities covered by this permit must be managed, stored and disposed of as specified in the SAM Manual in Section 5, II. E- 4. (http://www.sdcounty.ca.gov/deh/lwq/sam/manual_guidelines.html). In addition, drill cuttings must be properly handled and disposed in compliance with the Stormwater Best Management Practices of the local jurisdiction.
- 6. Within 60 days of completing work, submit a well construction report, including all well and/or boring logs and laboratory data to the Well Permit Desk. This report must include all items required by the SAM Manual, Section 5, Pages 6 & 7.

7.	This office must be given 48-hour	notice of any drilling activity on this site and advanced
	notification of drilling cancellation.	Please contact the Well Permit Desk at 338-2339.

APPROVED BY:	KEVINHEATON	DATE: <u>01/06/2006</u>

NOTIFIED: by enriel 1/6/06/1950 DEH:SAM-9075 (3/05)

WELL INSTALLATION

Statement of Certification

I, Mark Cutler, certify that, to the best of my knowledge, the data and information presented in the boring and well completion logs listed below are accurate and complete. Field activities and documentation were performed in accordance with accepted practices and procedures.

Mark Cutler, CA PG # 4487

PERMIT NO. LMON 103667

MCB Camp Pendleton, Area 14, UST Site 14131

Monitoring Well MW-7

MCB Camp Pendleton, Area 14, UST Site 14137

Monitoring Well MW-7

TETRA TECH EC, INC.

LOG OF BORING MW-7

				IVI V - / (Sheet 1 of 1)					
Client: NAVFAC SW					Drilli	Drilling Company: West Hazmat			
Project: UST Site 14137				,	Drilling Method: Hollow-Stem Auger				
Project Number: 2973.0004	Project Number: 2973.0004					pling Method: Split-Spoon			
Location: Marine Corps Base Cam	p Pe	endleton			~ 	hole Diameter: 8 in.			
Geologist: J. Sager					North	ning: 2,059,646.93 Feet (NAD 83)			
Date Started: February 21, 2006					Easti	ng: 6,240,721.53 Feet (NAD 83)			
Date Completed: February 21, 200	6					nd Surface Elevation: 283.50 Feet AMSL (NAVD 88)			
Total Depth: 15.0 Feet bgs					Top	of Casing Elevation: 283.13 Feet AMSL (NAVD 88)	· · · · · · · · · · · · · · · · · · ·		
Depth (ft. bgs) Well/Boring Completion Salow Counts	Samples	Sample Number	र ≷ Readings	nscs	Graphic Log	LITHOLOGIC DESCRIPTION	Elevation (ft.)		
Flushed Mounted Well Vault Cement Bentonite Seal			0.4	SM		0 to 4.5 ft. SILTY SAND - 85% fine to coarse grained sand, subrounded to subangular, 15% non-plastic fines, moist, brown, very loose, no hydrocarbon odor or staining	280		
4" Schedule 40 PVC Riser 4" Schedule 40 PVC Factory-Slotted Screen 0.010" Slot-Size		a).4		27 57 57 57 57 57 57 57 57 57 57 57 57 57	4.5 to 15 ft. GRANITE - weathered (decomposed) granitic rock (igneous), medium hard/dense, light brown, moist, no odor or staining	275		
10— Filter Pack #2/16 Sand		0.	.5		27 27 27 27 27 27 27 27 27 27 27 27 27 2		270		
						MARK CUTLET ST	265		
Notes: Reviewed By: M. Cutler, P.G. 4/26/06 AMSL = above mean sea level PVC = polyvinyl chloride bgs = below ground surface NA = not applicable PVC = Polyvinyl Chloride									

TIPW WELL CONSTRUCTOR 14137

February 10, 2006

Monitoring Well Permit Clerk
Site Assessment and Mitigation Program
County of San Diego, Department of Environmental Health
P.O. Box 129261
San Diego, CA 92112-9261

Subject:

Well Destruction Permit Protocol

UST Sites 14137, 14131, and 1441, MCB Camp Pendleton

Reference:

Permit Number LMON103667, January 6, 2006

Well Permit Clerk:

Tetra Tech EC is submitting this letter in fulfillment of the conditions of boring permit number LMON 103667 issued on January 6, 2006, for work at the following project:

Property Owner:

United States Marine Corps

Site Address:

Building 22165, MCB Camp Pendleton, California 92055

Contact Person:

Mr. Chet Storrs

Assistant Chief of Staff, Environmental Security

On January 27 & 30, 2006, Tetra Tech EC observed the destruction of five 4-inch diameter groundwater monitoring wells, one at Site 14137, one at Site 14131, and three at Site 1441 (A.P.N. #101-520-14-00). The following is a summary of work conducted, including a description of the destruction method, and the type and volume of backfill materials used.

At each of the five wells, the well box was removed before overdrilling began. An 8-inch hollow stem auger was then used to drill the entire depth of each well, with the cuttings being drummed and sent off-site for disposal. Once the wells were overdrilled, the well casings were removed and backfilling began. The approximate volumes of each borehole and the backfill material (in cubic feet) are as follows:

Site 14137

MW4:

Volume of borehole to 20-feet: 6.9 cubic feet (ft3)

Volume of backfill: 6 ft³ bentonite grout + 1 ft³ hydrated bentonite chips on top = 7 ft³ backfill

Site 14131

MW4

Volume of borehole to 15 feet: 5.2 ft³
Volume of backfill: 4.5 ft³ bentonite grout + 1 ft³ hydrated bentonite chips on top = 5.5 ft³ backfill

Site 1441

During the destruction of the wells at Site 1441, very difficult drilling conditions were encountered. The predominant lithology at the site consists of decomposed granite (bedrock). Due to these conditions, the original boreholes were installed using an air-rotary drilling method, and while attempting to overdrill using a hollow-stem auger rig with an 8-inch auger, refusal was met at an approximate depth of 10 feet. The boreholes were therefore overdrilled to depth using a 6-inch auger.

<u>MW1:</u>

Volume of borehole to 38 feet: 8.9 ft3

Volume of backfill: 8 ft³ bentonite grout + 1 ft³ hydrated bentonite chips on top = 9 ft³ backfill

<u>MW1a:</u>

Volume of borehole to 15 feet: 4.5 ft3

Volume of backfill: 4 ft^3 bentonite grout + 1 ft^3 hydrated bentonite chips on top = 5 ft^3 backfill

MW2:

Volume of borehole to 30 feet: 7.4 ft³

Volume of backfill: 6.5 ft³ bentonite grout + 1ft³ hydrated bentonite chips on top = 7.5 ft³ backfill

To summarize, the volume of backfill material placed in each borehole exceeded the calculated volume of that borehole, indicating the boreholes were adequately abandoned.

If you have any questions, please contact me at (949) 756-7526.

Sincerely,

Tetra Tech EC

Mark Cutler, P.G.

Project Manager

Attachments:

Well Location Map Copy of Permit

PERMIT #LMON103667 A.P.N. #101-520-14-00 EST #H05939-266/267/306

COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH LAND AND WATER QUALITY DIVISION MONITORING WELL PROGRAM

MONITORING WELL AND BORING CONSTRUCTION AND DESTRUCTION PERMIT

SITE NAME: BUILDINGS 14137, 14131, 1441

SITE ADDRESS: AREA 14, MARINE CORPS BASE, CAMP PENDLETON

PERMIT TO: INSTALL 6 & DESTROY 5 GROUNDWATER MONITORING WELLS

PERMIT APPROVAL DATE: JANUARY 6, 2006

PERMIT EXPIRES ON: MAY 6, 2006

RESPONSIBLE PARTY: U.S. MARINE CORPS, CAMP PENDLETON

PERMIT CONDITIONS:

- 1. Each of the monitoring wells must be constructed with a minimum annular seal of 5 feet and a maximum screened interval of 15 feet.
- 2. Contact the Regional Water Quality Control Board for their comments and concerns prior to commencing field activities.
- Wells must have a minimum 3-foot concrete surface seal. The surface seal shall consist of concrete able to withstand the maximum anticipated load without cracking or deteriorating. The concrete should meet Class A specifications of a minimum 4000-pound compressive strength.
- 4. For the well destructions, all material within the original borehole, which includes the casing, filterpack and annular seal, must be removed. The borehole must be completely filled with an approved sealing material as specified in Department of Water Resources Bulletin 74-90.
- 5. All water and soil resulting from the activities covered by this permit must be managed, stored and disposed of as specified in the SAM Manual in Section 5, II, E- 4. (http://www.sdcounty.ca.gov/deh/lwg/sam/manual_guidellnes.html). In addition, drill cuttings must be properly handled and disposed in compliance with the Stormwater Best Management Practices of the local jurisdiction.
- 6. Within 60 days of completing work, submit a well construction report, including all well and/or boring logs and laboratory data to the Well Permit Desk. This report must include all items required by the SAM Manual, Section 5, Pages 6 & 7.
- This office must be given 48-hour notice of any drilling activity on this site and advanced notification of drilling cancellation. Please contact the Well Permit Desk at 338-2339

APPROVED BY:	1/2 MANUE ATOM	DATE: <u>01/06/2006</u>
	KEVINWEATON	
	, ,	

NOTIFIED: by esseil 1/6/de max DEH:SAM-9075 (3/05)

a to trop of

APPENDIX B

STOCKPILE WAIVER CERTIFICATE AND SOIL EXCAVATION NON-HAZARDOUS MATERIALS HAULING MANIFESTS

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION 9174 Sky Park Court, Suite 100 MWCC3 Replacy Program San Diego, CA 92123-4340 UST/AST/LOD COUNTY Attention Local Discharge Test L Generator of Temporary Waste Pile SECTION A: Temporary Waste Pile Walver Certification nvironmenta II. Present Status of Temporary Waste Pile mine avas **≈**50 92055 Wests Type Conteminant/Constituent Concentrations Contemporal Type/Source: Diesel (malks) Elma + 100% CA. 20 Other Pairel. Hydrocarbons ☐ Impacted Dredge Spois Mars + 6811, 621, Em. + 65% Q.L Other Respected Solls -M. Weste Pile Site Information State Conditions Heat C Ground Water Separation Surface Water Separation Flood Plate Protection. CONNET OF Valuation Prince PredpizeSon/Orabage Control net Stavis Property Deliver Actinow provided per receipt of the material photology that notice, and administrate that I have reviewed any parameter reports. By signing this form the that the Generator of the water has continue that all the continues for the water from White Discharge Requirements (WDRs) for If specified waste individual in Section II (storage) have been mat. I hartely pulpositioning receipt of their Contracted manifest waste ladicale Salar and the salar and IV. Generator Certification I harmly cartify that the information provided regarding soil characterization is a complete and accurate representation of the subject soil, and that the Thereby carries are married provided regarding the crimental executive and accurate representation or the subject sus, and that said is not hexardous varies as defined by the California Code of Regulations, Title 22, and by the United States Endronmental Protection Agent (Code of Federal Regulations, Title 40), and that all conditions for the waiver from WDRs for discharge of specified variets indicated in Section II (above) have Print Manage System. California Regional Water Quality Control Scord, Sun Diago Region

Version: 7/1/02

MAIL CERTIFICATION FORMS TO:

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION

9174 Sky Park Court, Suite 100 San Diego, CA 92123-4340

Attention: Land Discharge Unit Supervisor

V. Final	Waste Disposal Informa	tion SECTION B: Tem	porary Waste Pile Waiver	Certification
Final	Disposition of Waste	Discharger/Property Owner		
X	Offsite/Landfill disposal	Property Owner/Discharger:	ne Corps 1	UST SIZE 1441
	n-site reuse/disposal	Malling Address:	Buildine 2	2165
	ff-site reuse/disposal	Comp Pardleton San	Diego State: Ca	zip: 92055
	ther	Contact Name:	Phone:	
, Zon		Chet Storrs		<u>25 -9774</u>
		Date(s) Waste Pile(s) Disposed:		
		-	Candelaria	Environment
		· · · · · · · · · · · · · · · · · · ·	4001. Con	Idaria lava
			1001) CA12	delaria lane, 1 92539
1			Aviza Ca	1 42539
	,			
Final	Disposal Certification		•	
	•	programilia avenda al faint que for alle		
		e personally examined and am familiar with dividuals immediately responsible for obta		
and cor	nplete. I am aware that there are	significant penalties for submitting false in	nformation, including the possibility of	information is true, accurate, fine and imprisonment."
	<i>~ ~</i> .	:	• •	
Print Na	ime:	<u>rrs</u>	Title: Ren Bi	arch Head
Signat	ure:		Date: 13 Feb	06
	vandolid			
	For Agency Use Only			
	RWQCB Regulatory Progra	m:		
-	☐ LDU ☐ DoD/SLIG			•
2	1		· · · · · · · · · · · · · · · · · · ·	· ·

BIOTREATMENT FACILITY NON-HAZARDOUS MATERIALS HAULING MANIFEST

	NAME: <u>AC/S ENVIRONMENTAL SEC</u> ADDRESS: P.O. BOX 555008		(760) 735-0771
G	CITY, STATE, ZIP CAMP PENDLETON	, CA 92055 APN:	(760) 725-9774 2006-06
ENERAT	WASTE DESCRIPTION NON-HAZ SO COMPONENTS OF WASTE (PPM) DIESEL-IMPACTED SOIL	II. GENERATING PROCE	SS <u>UST LEAR</u> ENTS OF WASTE (PPM) 14131 (1413)/1441
OR	PROPERTIES: SOLID YES HANDLING INSTRUCTIONS: WEAR APPL	ROPRIATE CLOTHING	
	GENERATOR CERTIFIES THAT THESE WASTER HAZARDOUS, BASED ON THE INFORMATION F APPLICATION AND THE ACCOMPANYING LABO BY:	PROVIDED BY THE GENERATOR PRATORY DATA	ON THE SOIL ACCEPTANCE
	Signature / Print or Type Full Name	DATE	
H A U	COMPANY NAME West Cost ADDRESS P.O. Box 1521 CITY, STATE, ZIP Lates 1 Co TRUCK TYPE: DUMP X ROLL OFF	SERVICE ORDER NO	
L	TRUCK LIC. #_9A81401	TRUCK ID # 1×	·
R	DRIVER NAME JEFF Robeltson	TRAILER LIC. #	1VT4225
	DRIVER SIGNATURE	TRAILER ID	
	TIME LEFT JOB0905	LOAD # 8	
200	JOB SITE REPRESENTATIVE Wame	1 Brugant UD Signatu	ire S
)	Deliver to facility Location: CANDELARIA ENVIRONMENTAL 4001 Candelaria Lane Anza, CA 92539 (951) 763-0129	Main office: Phone:(619) 696-6207 FAX (619) 696-5117 24 hr Emergency (619) 69	96-6207

BIOTREATMENT FACILITY NON-HAZARDOUS MATERIALS HAULING MANIFEST

	NAME: AC/S ENVIRONMENTAL SECURTIT (14 AREA)
_	ADDRESS: P.O. BOX 355008 PHONE NO. (750) 725-9774
G	CITY, STATE, ZIP CAMP PENDLETON, CA 92055 APN: 2006-06
E N E R A T	WASTE DESCRIPTION NON-HAZ SOIL GENERATING PROCESS UST LEAK COMPONENTS OF WASTE (PPM) DIESEL-IMPACTED SOIL UST SITES: 14131/14137/1441
O R	PROPERTIES: SOLIDYES HANDLING INSTRUCTIONS: WEAR APPROPRIATE CLOTHING
	GENERATOR CERTIFIES THAT THESE WASTES ARE RCRA NON-HAZARDOUS, AND CALIFORNIA NON-HAZARDOUS, BASED ON THE INFORMATION PROVIDED BY THE GENERATOR ON THE SOIL ACCEPTANCE APPLICATION AND THE ACCOMPANYING LABORATORY DATA
	BY: DATE: DATE:
H. A U	COMPANY NAME // // PHONE NO. 6/7/3/50/5/// ADDRESS P.O BOX 1521 SERVICE ORDER NO. PICK UP DATE 02/13/06 TRUCK TYPE: DUMP ROLL OFF OTHER
L E	TRUCK LIC. # 5655846 TRUCK ID #
R	DRIVER NAME TO THE TRAILER LIC. # 11 / 17 / 2
	DRIVER SIGNATURE TRAILER ID #
	TIME LEFT JOB 09 16 LOAD # 9
P R	JOB SITE REPRESENTATIVE WORLD 102
O C E	Name Signature
SSOR	Deliver to facility Location: CANDELARIA ENVIRONMENTAL 4001 Candelaria Lane Anza, CA 92539 Main office: Phone:(619) 696-6207 FAX (619) 696-5117 24 Temergency (619) 696-6207

(951) 763-0129

M 9-97

BIOTREATMENT FACILITY NON-HAZARDOUS MATERIALS HAULING MANIFEST

	NAME: AC/S ENVIRONMENTAL SECUR ADDRESS: P.O. BOX 555008 CITY, STATE, ZIP CAMP PENULETON.	TIY (14 AREA) PHONE NO. (760) 725-9774
G E	CITY, STATE, ZIP CAMP PENDLETON.	CA 92055 APN: 2006-06
NERAT	WASTE DESCRIPTION	GENERATING PROCESS UST LEAK COMPONENTS OF WASTE (PPM) UST SITES: 14131(14137/1441
O R	PROPERTIES: SOLID YES HANDLING INSTRUCTIONS: WEAR APPRO	PRIATE CLOTHING
	GENERATOR CERTIFIES THAT THESE WASTES A HAZARDOUS, BASED ON THE INFORMATION PRO APPLICATION AND THE ACCOMPANYING LABORA	ARE RCRA NON-HAZARDOUS, AND CALIFORNIA NON- DVIDED BY THE GENERATOR ON THE SOIL ACCEPTANCE ATORY DATA
	BY: Signature / Print or Type Full Name	DATE: 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1
H A U	CITY, STATE, ZIP / CIKESIONE, CIA	PHONE NO. (019-443-4200) SERVICE ORDER NO. PICK UP DATE 3-13-1 (
L E	TRUCK LIC. #	TRUCK ID #(
R	DRIVER NAME /IM Shork	TRAILER LIC. # 6765974
	DRIVER SIGNATURE	TRAILER ID #
_ [TIME LEFT JOB	LOAD # 10
ROCE	JOB SITE REPRESENTATIVE (1) Name	Bryant US
8	Deliver to facility Location: CANDELARIA ENVIRONMENTAL 4001 Candelaria Lane Anza, CA 92539 (951) 763-0129	Main office: Phone:(619) 696-6207 FAX (619) 696-5117 24 hr Emergency (619) 696-6207

4001 Candelaria Lane

Anza, CA 92539

(951) 763-0129

CANDELARIA ENVIRONMENTAL

BIOTREATMENT FACILITY NON-HAZARDOUS MATERIALS HAULING MANIFEST

_	NAME: AC/S ENVIRONMENTAL SECURTLY (14 AREA) ADDRESS: P.O. BOX 535008 PHONE NO. (760) 725-9774
G E	CITY, STATE, ZIP CAMP PENDLETON, CA 92055 APN: 2005-06
L N E R	WASTE DESCRIPTION NON-HAZ SOIL GENERATING PROCESS UST LEAK COMPONENTS OF WASTE (PPM) COMPONENTS OF WASTE (PPM)
A	DIESEL-IMPACTED SOIL UST SITES: 14131 (14137) 1441
T	
O R	PROPERTIES: SOLID
	GENERATOR CERTIFIES THAT THESE WASTES ARE RCRA NON-HAZARDOUS, AND CALIFORNIA NON-HAZARDOUS, BASED ON THE INFORMATION PROVIDED BY THE PROVIDED
	HAZARDOUS, BASED ON THE INFORMATION PROVIDED BY THE GENERATOR ON THE SOIL ACCEPTANCE APPLICATION AND THE ACCOMPANYING LABORATORY DATA
	BY: DATE: DATE:
ĺ	
H	ADDRESS SERVICE ORDER NO.
 A	
U	TRUCK TYPE: DUMPROLL OFFOTHER
	TRUCK LIC. # 75/1/74 TRUCK ID # TRUCK ID #
- {	DRIVER NAME War How TRAILER LIC. # 4/1 CA TO STATE OF THE TRAILER LIC.
	DRIVER SIGNATURETRAILER ID #
	TIME LEFT JOB OP 45 LOAD #1
)	JOB SITE REPRESENTATIVE WHITE BUYOUT Signature
F	
	Deliver to facility Location: CANDELARIA ENVIRONMENTAL Phone:(619) 696-6207

FAX (619) 696-5117

24 hr Emergency (619) 696-6207

BIOTREATMENT FACILITY NON-HAZARDOUS MATERIALS HAULING MANIFEST

	NAME: AC/S ENVIRONMENTAL SECURTLY (14 AREA)
\circ	ADDRESS: P.U. BUX 335008 PHONE NO. (760) 725-9774
G E	CITY, STATE, ZIP CARP FEMULEION, CA 92055 ADN. 2006-06
LNERAT	WASTE DESCRIPTION NON-HAZ SOIL GENERATING PROCESS UST LEAR COMPONENTS OF WASTE (PPM) DIESEL-IMPACTED SOIL UST SITES: 14131/(4137)1441
O .R	PROPERTIES: SOLID YES HANDLING INSTRUCTIONS: WEAR APPROPRIATE CLOTHING
	GENERATOR CERTIFIES THAT THESE WASTES ARE RCRA NON-HAZARDOUS, AND CALIFORNIA NON-HAZARDOUS, BASED ON THE INFORMATION PROVIDED BY THE GENERATOR ON THE SOIL ACCEPTANCE APPLICATION AND THE ACCOMPANYING LABORATORY DATA
	BY:DATE: /DATE: /
	COMPANY NAME OF SOME PHONE NO. (102-C11)
Н	ADDRESS SERVICE ORDER NO.
A U	TRUCK TYPE: DUMP Y ROLL OFF OTHER
_ ≡ ¬	TRUCK LIC. # 1202
ר	DRIVER NAME TO TRAILER LIC. #46-14 5-4
	DRIVER SIGNATURETRAILER ID #
	TIME LEFT JOB 1/1/
	LOAD # 13
	JOB SITE REPRESENTATIVE Wenty Bryant Signature
	Deliver to facility Location: Main office:
	CANDELARIA ENVIRONMENTAL 4001 Candelaria Lara Phone: (619) 696-6207

FAX (619) 696-5117

24 hr Emergency (619) 696-6207

Ρ 0 CESS

4001 Candelaria Lane

Anza, CA 92539

(951) 763-0129

Ĥ

BIOTREATMENT FACILITY NON-HAZARDOUS MATERIALS HAULING MANIFEST

AC/S ENVIRONMENTAL SECURTLY (14 AREA) ADDRESS: P.O. BOX 555008 PHONE NO. (760) 725-9774 CAMP PENDLETON, CA 92055 CITY, STATE, ZIP APN: E N WASTE DESCRIPTION WOR-HAZ SOT). GENERATING PROCESS UST LEAR COMPONENTS OF WASTE (PPM) COMPONENTS OF WASTE (PPM) DIESEL-IMPACTED SOIL UST SITES: 14131/14137/1441 O A HANDLING INSTRUCTIONS: WEAR APPROPRIATE CLOTHING GENERATOR CERTIFIES THAT THESE WASTES ARE RCRA NON-HAZARDOUS, AND CALIFORNIA NON-HAZARDOUS, BASED ON THE INFORMATION PROVIDED BY THE GENERATOR ON THE SOIL ACCEPTANCE APPLICATION AND THE ACCOMPANYING LABORATORY DATA DATE: 1.3 F. - 1/3. Signature / Print or Type Full Name COMPANY NAME - CS + COO. A MOCK HEAT PHONE NO. - 17 56/3701 ADDRESS SERVICE ORDER NO. H GITY, STATE, ZIP PICK UP DATE .7 - / 3 - / 4 TRUCK TYPE: DUMP __ ROLL OFF OTHER U TRUCKLIC.# ノーノー・ゲークニックラ TRUCKID# **/フ・フ E R DRIVER NAME - ウイル・フィン・・ TRAILER LIC. # ニュナムタグラ DRIVER SIGNATURE TRAILER ID # TIME LEFT JOB LOAD# P H JOB SITE REPRESENTATIVE 36222 0 Name Signature C E S Deliver to facility Location: Main office: CANDELARIA ENVIRONMENTAL 9 Phone:(619) 696-6207 4001 Candelaria Lane ٤ FAX (619) 696-5117 R Anza, CA 92539 24 TEmergency (619) 696-6207 (951) 763-0129

M 9-97

BIOTREATMENT FACILITY NON-HAZARDOUS MATERIALS HAULING MANIFEST

G	NAME: AC/S ENVIRONMENTAL SECURTLY ADDRESS: P.O. BOX 555008 CITY, STATE, ZIP CAMP PENDLETON. CA 920	(14 AREA) PHONE NO. (760) 725-9774 APN: 2006-06
ENERATO	WASTE DESCRIPTION NON-HAZ SOIL GEN COMPONENTS OF WASTE (PPM) DIESEL-IMPACTED SOIL	EDATING DROCESS
Ř	PROPERTIES: SOLID	CLOTHING
	GENERATOR CERTIFIES THAT THESE WASTES ARE RCF HAZARDOUS, BASED ON THE INFORMATION PROVIDED E APPLICATION AND THE ACCOMPANYING LABORATORY D	BY THE GENERATOR ON THE SOULACCERTANCE
	BY:	DATE: / S. / S
H A U	COMPANY NAME PI ADDRESS SI CITY, STATE, ZIP ROLL OFF OTHER	CK UP DATE O - 3 - 3 - 2 - 1 - 1 - 1
LE	TRUCK LIC. # 1 7 7 TF	RUCK ID #
R	DRIVER NAME TO THE TRANSPORT OF THE TRAN	AILER LIC. #_1+ T 1+ 1 + 2
	DRIVER SIGNATURE ()	TRAILER ID # 1 AND 1
,	TIME LEFT JOB 1145	LOAD #
R	JOB SITE REPRESENTATIVE LA LA Name	Signature)
	4001 Candelaria Lane FAX (office: e:(619) 696-6207 (619) 696-5117 Emergency (619) 696-6207

APPENDIX C

LABORATORY ANALYTICAL REPORTS FOR EXCAVATION CONFIRMATION SOIL SAMPLES AND EXCAVATION BACKFILL MATERIALS

TABLE OF CONTENTS

MAR 1 6 200

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

SDG:

06B030

SECTION		PAGE	
Cover Letter, Co	OC/Sample Receipt Form	1000 – 1003	
GC/MS-VOA	**	2000 —	
GC/MS-SVOA	**	3000 –	
GC-VOA	**	4000	
GC-SVOA	METHOD 3550B/8015B	5000 - 5059	
HPLC	**	6000 –	
METALS	**	7000 –	
WET	**	8000	
OTHERS	**	9000 –	

^{** -} Not Requested

			-	
			14 41	
	•			
· · · · · · · · · · · · · · · · · · ·				
			.	

1835 W. 205th Street Torrance, CA 90501

Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 02-14-2006 EMAX Batch No.: 068030

Attn: Nick Weinberger

SES-TECH 1940 E. Deere Avenue, Suite 200 Santa Ana CA 92705

Subject: Laboratory Report

Project: Camp Pendleton, UST Site 14137

Enclosed is the Laboratory report for samples received on 02/03/06. The data reported include :

Sample ID	Control #	Col Date	Matrix	Analysis
0004-073	B030-01	02/03/06	SOIL	TPH DIESEL
0004-074	B030-02	02/03/06	SOIL	TPH DIESEL
0004-075	B030-03	02/03/06	SOIL	TPH DIESEL
0004-076	B030-04	02/03/06	SOIL	TPH DIESEL
0004-077	B030-05	02/03/06	SOIL	TPH DIESEL
0004-078	в030-06	02/03/06	SOIL	TPH DIESEL
0004-079	в030-07	02/03/06	SOIL	TPH DIESEL
0004-080	B030-08	02/03/06	SOIL	TPH DIESEL
0004-081	B030-09	02/03/06	SOIL	TPH DIESEL
0004-081MS	B030-09M	02/03/06	SOIL	TPH DIESEL
0004-081MSD	B030-09S	02/03/06	SOIL	TPH DIESEL

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Kam Y. Pang, Ph.D. Laboratory Director FOSTER WHEELER ENVIRONMENTAL CORPORATION

1230 Columbia Street, Suite 640 San Diego, CA 92101 (619) 234-8696

N RQ

068085 COMMENTS FOR LABORATORY) 04966 LABORATORY ID DINTACT 00 0000 SAMPLE CONDITION UPON RECEIPT (FOR LABORATORY) NUMBER SAMPLE CONDITION: BROKEN ANALYSES REQUIRED CHAIN-OF-CUSTODY RECORD のなどからの COOLER SEAL: ZINTACT COMPOSITE DESCRIPTION TEMPERATURE: 60.7 3 LEVEL CONTAINER RECEIVED BY (Signature) PURCHASE ORDER NO COLLECTED 215106/1036 245/1/42 COMPANY 川の公方 2350 23bd 125/25 25/25 めら 2319 COLLECTED

クリン・せいろう

こしいっていい

いいりょうでしん

000

RELINQUISMED BY (Signature)

OMPANY

0004 - 000

3

SAMPLE ID

Tuna	of Deliver			T	
EMAX Courier	of Delivery	Delivered By/Airbill		ECN	068030
		· (FF C.O,C		Recepient	J. WNA
Client Delivery				Date	020306
Third Party				Time	1615
T-1		COC Inspection			
Client Name		Sampler Name		Sampling [Date/Time/Location
Address		Courier Signature/Date/Time		Analysis R	equired
Client PM/FC		[] T AT		Matrix	
Tel #/Fax #	,	Sample ID		Preservativ	e (if any)
Safety Issues	None	High Concentrations expected			Site Samples
Comments:	Rad Screening Requ		•		ora samples
				,	
		Packaging Inspection			
Container	Cooler	☐ Box		ŗ	-
Condition	Custody Seal	☐ BOX			
Packaging	Bubble Pack		Damag		
Temperatures	Cooler 1 = 3.7	Styrofoam	Sufficie	C.	J Growing C OUR
Tomporatares		☑ Cooler 2			Cooler 4
ı	Cooler 5	Cooler 6	Cooler 7	7[Cooler 8
Comments:	Cooler 9	Cooler 10	Cooler 1	11[Cooler 12
Comments.					
LCOID				· · · · · · · · · · · · · · · · · · ·	
LSCID	Client ID	Discrepancy		Co	orrective Action
					
*					
					<u> </u>
				-	
· · · · · · · · · · · · · · · · · · ·					
		1-02	3306		
.SCID : Lab Sampl	e Container ID				
REVIEWS	<u></u>				\sim // /
Sample Labeling	At .	SRF ()	11/11/2	PM	1171101
Date	020306	Date Date	TITAL	_	- LAUY
-	<u> </u>	. Date	0/00	Date	2/6/06
	,	V	V		1 /

REPORTING CONVENTIONS

DATA QUALIFIERS:

Lab Qualifier	AFCEE Qualifier	Description
J	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
N		Indicates presumptive evidence of a compound.
В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out

DATES

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14137

METHOD 3550B/8015B
TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 06B030

					A *
•					
					w _a
					, s ^{et}
		1			
·	· · · · · · · · · · · · · · · · · · ·	-			
			,		.* -

CASE NARRATIVE

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

SDG:

06B030

METHOD 3550B/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Nine (9) soil samples were received on 02/03/06 for Total Petroleum Hydrocarbons by Extraction analysis by Method 3550B/8015B in accordance with SW846 3RD Edition.

1. Holding Time

Analytical holding time was met. Extraction was performed and completed on 02/06/06.

2. Calibration

Initial calibration was seven points for Diesel. %RSDs were within 20%. Continuing calibrations were carried out at 12-hour intervals and all recoveries were within 85-115%.

3. Method Blank

Method blank was free of contamination at half of the reporting limit.

4. Surrogate Recovery

Surrogate recovery in sample B030-06 and -07 could not be evaluated due to dilution. All others met the QC criteria.

5. Lab Control Sample

Recovery was within QC limits.

6. Matrix Spike/Matrix Spike Duplicate

Sample B030-09 was spiked. Recoveries were within QC limits.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met with the aforementioned exception. Sample results were quantitated from C10 to C24 using Diesel (C10-C24) calibration factor.

Samples B030-03, -04, -06, -07 and -09 displayed diesel-like fuel pattern.

Sample B030-02 displayed motor-oil like fuel pattern.

LAB CHRONICLE TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Client	Client : SES-TECH							SDG NO.	. SDG NO.	: 068030
Project	: CAMP PENDLETON, UST SITE 14137	. UST SITE 141	37) 	######################################		77	######	Instrument ID	nt 1D : GCTO50
					HOS					
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration Pren	na Pren	
Sample 1D		Sample ID	Factor	Moist	DateTime	Datelime	Data FN	Data FN	Batch	Notes
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1		1 1 1 1 1 1 1 1 1 1	* * * * * * * * * * * * * * * * * * * *	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MBLK1S		0SB013SB	-	NA	02/06/0618:12	02/06/0611:15	TB060044	TROKOD34	DSR0135	Nother Mark
LCS1S		0SB013SL	-	ΝĄ	02/06/0618:54	02/06/0611-15	TRUKUUSA	18060021	DC80130	tab Control Sample (ICS)
0004-073	المستخرمه	B030-01	-	6.7	02/06/0619-36	02/06/0611-15	TROCOUR	TB040024	0.000133	Ear collist sample (Ecs)
720-5000		8030-02	. g.,	r.	02,020,007,000	02,007,007,11	1000000	1500003A	020000	rietu sample
720-7000		20.0200	٠,	, ,	05,000 t 20	C1:1100/00/70	ACT DOUBL	BUDGUSA	0580155	Fletd Sample
070-4000		8020-03	_	5.4	02/06/0620:18	02/06/0611:15	TB06007A	TB06003A	DSB013S	Field Sample
0004-076		8030-04	_	7.7	02/07/0602:36	02/06/0611:15	TB06016A	TB06014A	0580135	Field Sample
0004-077		B030-05		6.2	02/06/0621:00	02/06/0611:15	TB06008A	TB06003A	DSB013S	Field Sample
0004-078		B030-067	, 01	10.5	02/07/0603:18	02/06/0611:15	TB06017a	TR060144	DSB0135	Diluted Sample
0004-079		B030-07T	10 ,	6.8	02/07/0604:00	02/06/0611:15	TR060184	TR060144	DCB0133	Dilitary Comple
0304-080		8030-08		4.1	02/06/0621:42	02/06/0611:15	TROGODOA	TROSOCA	DSE0133	Field comple
0004-081		8030-09	4	5.6	02/06/0622:24	02/06/0611:15	TRO60104	TRUKUNZA	DSE0133	
0004-081MS		B030-09M	,	5.6	02/06/0623:06	02/06/0611-15	TR06011A	TROCOUSA	DSB0135	Matrix Crito Cample /NC)
0004-081MSD		B030-098	-	7	87-2670770760	0270670611:15	TEOCOLOR	12000001	00000	man in opine dampte that
		† •	•	;	01,000,000,10	02/00/00/11	#71 nong 1	HCUUDUA!	0280128	MS Duplicate (MSD)

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

				•
				-

===============			
	SES-TECH	Date Collected:	02/03/06
∵ject :	CAMP PENDLETON, UST SITE 14137 06B030 0004-073	Date Received:	02/03/06
ch No. :	068030	Date Extracted:	02/06/06 11:15
sample ID:	0004-073	Date Analyzed:	02/06/06 19:36
Lab Samo ID:		Dilution Factor:	1
Lab File ID:	TB06006A	Matrix :	SOIL
Ext Btch ID:	DSB013S	% Moisture :	4.2
Calib. Ref.:	TB06003A	Instrument ID :	GCT050

|--|

PARAMETERS	RESULTS (mg/kg)	RL (mg/kg)	MDL (mg/kg)
DIESEL	ND	10	5.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
HEXACOSANE	107	65-135	

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

Client : SES-TECH

Date Collected: 02/03/06 : CAMP PENDLETON, UST SITE 14137 Project Date Received: 02/03/06 Batch No. : 06B030

Date Extracted: 02/06/06 11:15 Sample ID: 0004-074 Date Analyzed: 02/07/06 00:30

Lab Samp ID: 8030-02 Dilution Factor: 1 : SOIL : 5.9 Lab File ID: TB06013A Matrix Ext Btch ID: DSB013S % Moisture Instrument ID : GCT050 Calib. Ref.: TB06003A

RESULTS RL MDL **PARAMETERS** (mg/kg) (mg/kg) (mg/kg) DIESEL 780 / 11 5.3

SURROGATE PARAMETERS % RECOVERY QC LIMIT ______ ------HEXACOSANE 108 65-135

: Reporting Limit Parameter H-C Range Diesel C10-C24

Client : SES-TECH Date Collected: 02/03/06
ject : CAMP PENDLETON, UST SITE 14137 Date Received: 02/03/06
bh No. : 068030 Date Extracted: 02/06/06

Date Extracted: 02/06/06 11:15
Date Analyzed: 02/06/06 20:18

 Sample ID: 0004-075
 Date Analyzed: 02/06/0

 Lab Samp ID: B030-03
 Dilution Factor: 1

 Lab File ID: TB06007A
 Matrix : SOIL

 Ext 8tch ID: DSB013S
 % Moisture : 5.4

 Calib. Ref.: TB06003A
 Instrument ID : GCT050

	RESULTS	RL.	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)
DIESEL	1600	, 11	5.3

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE 115 65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

=======================================	========		======		=======================================	=====
Client : SES-TECH			Date	Collected:	02/03/06	
Project : CAMP PENI	DLETON, UST S	SITE 14137	Date	Received:	02/03/06	
Batch No. : 068030			Date	Extracted:	02/06/06	11:15
Sample ID: 0004-076			Date	Analyzed:	02/07/06	02:36
Lab Samp ID: B030-04			Diluti	on Factor:	1	
Lab File ID: TB06016A			Matrix	:	SOIL	
Ext Btch ID: DSB013S			% Mois	ture :	7.7	
Calib. Ref.: TB06014A	•		Instru	ment ID :	GCT050	
	=======================================	=========	=======	=========		=====
B			SULTS	RL		MDL
PARAMETERS		(m	ig/kg)	(mg/kg)	(m)	g/kg)
					n n-	
DIESEL			53	11		5.4
SURROGATE PARAMETERS		% REC	OVERY	QC LIMIT	r	
*******					•	

107

65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

HEXACOSANE

	^말 ^
Client: SES-TECH ch No.: 06B030 chiple ID: 0004-077 Lab Samp ID: 8030-05 Lab File ID: T806008A Ext Btch ID: DSB013S Calib. Ref.: T806003A	Date Collected: 02/03/06 TE 14137 Date Received: 02/03/06 Date Extracted: 02/06/06 11:15 Date Analyzed: 02/06/06 21:00 Dilution Factor: 1 Matrix : SOIL % Moisture : 6.2 Instrument ID : GCT050
PARAMETERS	RESULTS RL MDL (mg/kg) (mg/kg) (mg/kg)
DIESEL	ND 11 5.3
SURROGATE PARAMETERS	% RECOVERY QC LIMIT
HEXACOSANE	105 65-135
RL : Reporting Limit . Parameter H-C Range Diesel C10-C24	/

Client : SES-TECH

Date Collected: 02/03/06 Project : CAMP PENDLETON, UST SITE 14137 Batch No. : 06B030 Date Received: 02/03/06

Date Extracted: 02/06/06 11:15 Date Analyzed: 02/07/06 03:18

Lab Samp ID: B030-06T Dilution Factor: 10 Lab File ID: TB06017A

Matrix : SOIL % Moisture : 10.5 Ext Btch ID: DS80138 Calib. Ref.: TB06014A Instrument ID : GCT050

RESULTS RL MDL PARAMETERS (mg/kg) (mg/kg) (mg/kg) DIESEL 6700 110 56

SURROGATE PARAMETERS % RECOVERY QC LIMIT HEXACOSANE DO 65-135

RL : Reporting Limit Parameter H-C Range Diesel C10-C24

ĐO : Diluted Out

Sample ID: 0004-078

========		=====	=====	====:			*****
Client :					Date	Collected:	02/03/06
್ರಾject :	CAMP PENDLETON,	UST	SITE	1413	7 Date	Received:	02/03/06
)ch No. :	068030				Date	Extracted:	02/06/06 11:15
iple ID:	0004-079				Date	Analyzed:	02/07/06 04:00
Lab Samp ID:					Dilut	ion Factor:	10
Lab File ID:					Matri	х :	SOIL
Ext Btch ID:					% Moi	sture :	6.8
Calib. Ref.:	TB06014A				Instr	rument ID :	GCT050
		=====	=====	====			
	•						
	•				RESULTS	RL	MDL
PARAMETERS					(mg/kg)	(mg/kg)	(mg/kg)
DIESEL					6200	110	54
						<i>y</i>	
SURROGATE PA	RAMETERS			% [RECOVERY	QC LIMI	T

DQ

65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

DO : Diluted Out

HEXACOSANE

Client : SES-TECH Date Collected: 02/03/06 Project : CAMP PENDLETON, UST SITE 14137 Date Received: 02/03/06 Batch No. : 068030 Date Extracted: 02/06/06

Batch No.: 068030 Date Extracted: 02/06/06 11:15
Sample ID: 0004-080 Date Analyzed: 02/06/06 21:42 ,
Lab Samp ID: 8030-08 Dilution Factor: 1

Lab File ID: TB06009A Matrix : SOIL
Ext Btch ID: DSB013S % Moisture : 4.1
Calib. Ref.: TB06003A Instrument ID : GCT050

	RESULTS	RL	MDL
PARAMETERS	(mg/kg)	(mg/kg)	(mg/kg)

DIESEL	ND	10	5.2

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE 105 65-135

RL : Reporting Limit
Parameter H-C Range
Diesel C10-C24

: SES-TECH Client Date Collected: 02/03/06 Date Received: 02/03/06

iect : CAMP PENDLETON, UST SITE 14137 h No. : 06B030 Date Extracted: 02/06/06 11:15 Date Analyzed: 02/06/06 22:24 / Sample ID: 0004-081 Lab Samp ID: B030-09 Dilution Factor: 1

Lab File ID: TB06010A Matrix : SOIL : 5.6 Ext Btch ID: DSB013S % Moisture Instrument ID : GCT050 Calib. Ref.: TB06003A

RESULTS PARAMETERS (mg/kg) (mg/kg) (mg/kg) 5.3 DIESEL 14 11

. /

QC LIMIT SURROGATE PARAMETERS % RECOVERY -----_____ 65-135 HEXACOSANE 103

: Reporting Limit Parameter H-C Range C10-C24 Diesel

			•
			14
·			
			÷.
a companied.	^		
		•	
			<i>2</i> * →

QC SUMMARIES

•					•
					•
					*.
			•		
				•	
		•			
*	- negetilated - "	•			
				•	
					-

: SES-TECH Client Date Collected: NA

Date Received: 02/06/06

ject : CAMP PENDLETON, UST SITE 14137 ch No. : 068030 Date Extracted: 02/06/06 11:15 Date Analyzed: 02/06/06 18:12

Sample ID: MBLK1S Lab Samp ID: DSB013SB Dilution Factor: 1

Lab File ID: TB06004A Matrix : SOIL Ext Btch ID: DSB013S % Moisture : NA Calib. Ref.: TB06003A Instrument ID : GCT050

RESULTS RL. MDL PARAMETERS (mg/kg) (mg/kg) (mg/kg) DIESEL ND 10

SURROGATE PARAMETERS % RECOVERY QC LIMIT ----------**HEXACOSANE** 111 65-135

: Reporting Limit Parameter H-C Range C10-C24 Diesel

EMAX QUALITY CONTROL DATA LCS ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

BATCH NO.: METHOD:

068030

METHOD 35508/8015B

MATRIX: DILUTION FACTOR: 1

SOIL

MBLK1S

SAMPLE ID: LAB SAMP ID: DS8013SB

LAB FILE ID:

DSB013SL TB06004A TB06005A

DATE EXTRACTED: 02/06/0611:15 02/06/0611:15 DATE ANALYZED: PREP. BATCH:

CALIB. REF:

02/06/0618:12 02/06/0618:54

DSB013S DSB013S TB06003A TB06003A DATE COLLECTED: NA

% MOISTURE:

DATE RECEIVED: 02/06/06

ACCESSION:

PARAMETER -----

Hexacosane

(mg/kg)

BLNK RSLT SPIKE AMT (mg/kg) 500

BS RSLT (mg/kg)

BS QC LIMIT % REC (%) 102

Diesel

ND

509

65-135

SURROGATE PARAMETER

SPIKE AMT BS RSLT (mg/kg) _____ 25

(mg/kg) *-----28

% REC (%) -----112 65 - 135

BS QC LIMIT

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

TCH NO.:

068030

HOD:

SAMPLE ID:

LAB SAMP ID:

LAB FILE ID:

METHOD 3550B/8015B

MATRIX: DILUTION FACTOR: 1

SOIL

0004-081

B030-09

B030-09M TB06010A TB06011A

B030-09S

DATE EXTRACTED: 02/06/0611:15 02/06/0611:15

TB06012A 02/06/0611:15

02/06/0623:06 02/06/0622:24

02/06/0623:48 DSB013S

DATE COLLECTED: 02/03/06 DATE RECEIVED:

% MOISTURE:

02/03/06

5.6

DATE ANALYZED: PREP. BATCH: CALIB. REF:

DSB013S TB06003A

DSB013S TB06003A

TB06003A

ACCESSION:

SMPL RSLT SPIKE AMT MS RSLT MS SPIKE AMT MSD RSLT QC LIMIT MAX RPD PARAMETER (mg/kg) (mg/kg) (mg/kg) % REC % REC (mg/kg) (mg/kg) (%) (%) (%) Diesel 13.6 530 535 98 530 538 99 65-135 35

SPIKE AMT MS RSLT MS SPIKE AMT MSD RSLT MSD QC LIMIT SURROGATE PARAMETER (mg/kg) (mg/kg) % REC (mg/kg) (mg/kg) % REC (%) Hexacosane 26.5 29.2 110 26.5 29.2 110 65-135

5025

				•
	,			
	•			
*				
·				
•	. Transport	•		
			•	

TABLE OF CONTENTS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

SDG:

06B030A

SECTION		PAGE
Cover Letter, CO	OC/Sample Receipt Form	1000 – 1004
GC/MS-VOA	SW 1312/5030B/8260B	2000 – 2120
GC/MS-SVOA	SW. 1312/3520C/8270C SIM	3000 – 3111
GC-VOA	**	4000 –
GC-SVOA	METHOD 1312/3520C/8015B	5000 - 5048
HPLC	**	6000 –
METALS	**	7000 –
WET	**	8000 –
OTHERS	**	9000 —
	·	

^{** -} Not Requested

·

Torrance, CA 90501 Tel: (310) 618-8889 Fax: (310) 618-0818

Date: 02-24-2006

EMAX Batch No.: 06B030A

Attn: Nick Weinberger

SES-TECH

1940 E. Deere Avenue, Suite 200

Santa Ana CA 92705

Subject: Laboratory Report

Project: Camp Pendleton, UST Site 14137

Enclosed is the Laboratory report for samples received on 02/03/06.

Enclosed is the Laboratory report for samples received on 02/03/06. The data reported include:

Sample ID	Control #	Col Date	Matrix	Analysis
0004 - 075	8030-03	02/03/06	SOIL	VOLATILE ORGANICS SPLP
•			·.	TPH DIESEL SPLP
				SEMIVOLATILE ORGANICS SPLP
0004-078	8030-06	02/03/06	SOIL	VOLATILE ORGANICS SPLP
				TPH DIESEL SPLP
				SEMIVOLATILE ORGANICS SPLP
0004-079	B030-07	02/03/06	SOIL	VOLATILE ORGANICS SPLP
				TPH DIESEL SPLP
				SEMIVOLATILE ORGANICS SPLP

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Kam Y. Pang, Ph.D. Laboratory Director

CHANGE ORDER FORM

SDG 06 B0 30 A TAT 5 day Project Code SES 660/_
Requested by William B Date Requested 2/9/06 Due Date 2/16/06

			Analytical	Requirements
AXO	EMAX Control Number	Sample Prep. Methods	Analytical Methods	Special Instructions
A	068030-03	1312/5030B	8260B	SPLP VOCS
		1312/3520C	8015B	SPLP Diesel
	<i>\\</i>	13/2/35000	8270SiM	SPLP PAHS.
	-06			SPLP (VOCS, Diesel, PAH, by 8
	-07			SPLP (VOCs, Diesel, PAH, by823
	-			
				_
, identification of the second		sawa '		

A-additional

X-cancelled

O-others (specify)

1001

Richard Beauvil

Nick. Weinberger@tteci.com From:

Thursday, February 09, 2006-2:22 PM Sent:

Richard Beauvil <u>;</u>

Mark.Cutler@tteci.com; Wendy.Bryant@tteci.com ဒ္ဌ

Subject: Re: 06B030

Ricahrd,

Please analyze sample numbers 0004-075, 0004-078, and 0004-079 from SDG 06B030 for SPLP VOC's, SPLP TPH-d, and SPLP PAH's. Call me if you have any questions,

돐

Nicholas Weinberger

Tetra Tech EC Inc. Phone: (949)756-7588 Fax: (949)756-7583 E-mail: Nick.Weinberger@tteci.com

FOSTER WHEELER ENVIRONMENTAL CORPORATION 1230 Columbia Street, Suite 640 San Diego, CA 92101 (619) 234-8696

1230 Columbia Street, Suite 640 San Diego, CA 92101 (619) 234-8695
et, Suite 640 San Diese Commental CORPORATI
FROJECT NAME (619) 234-8696
FROJECT NAME
CHAIN-OR
PROJECT LOCATION PURCHASE ORDER NO. PURCHASE ORDER NO.
PROJECT LOCATION CONCERNO PURCHASE ORDER NO. WILL ISSUED NUMBER 049
SAMPLER NAME SITE 14137 PROJECT NO. COLL W ANALYSES REQUIRED
SAMPLER NAME SITE 14137 PROJECT NO. COLL TO ANALYSES REQUIRED LABORS TO PROJECT NO.
PROPECT FONTACE DA SAMPLER SIGNATO
N CONTACT TO CONTACT TO SOME THE SOME T
The Deinha
SAMPLEID CHECK THE SAMPLEID
SAMPLE ID DATE COLVIER OF THE SAME OF THE
COLLECTED CONTAINER LEVEL T T T
2004-074 01036 ZX 5 18 19 1 196 06X
1004-07a 10061036 2 THEFT I I I I I I I I I I I I I I I I I I I
4 months Day Tonit & N Strong The
10004-07/12/201058 17 17 19/10X
Sterna to 10 10 12 In the North All I I I I I I I I I I I I I I I I I I
1004-00-1900 (M9/2 THACK) THACK
6/mov
700011 078 2310 11201 EX 1518/XT 1 1 1 1
8/2001 2/2/1/1/2012 NSPIN 1 1 1 1 1 1 1 1 1
HD04 - 5 cm T4991174 - 17 HBM/ 1 1 1 1 1 1 1 1 1
9 0000 22 X SPOT 1 TT
10004-00-1004114212THWAIT
100 pola Tital XI KIISTITI I I I I I
1000 - 10
land the state of
BLINDING ORZ GUB TAZI
BELINQUISTED TO TO THE TOTAL OF
1 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RELINGUIST TIME BY (Signalure)
RELINQUISHED BY (SIgnature) 13:40 COMPANY BORATORY INSTRUCTION
RELINOUISHED BY (Signature) TIME TIME TIME TOMPONY A DO COMPONY A DO COMPONY TIME TOMPONY TOM
OMPANY CL. 2 B/O 6 16: RECEIVED DIVERGENCE COMPOSITE COM
LINQUISHED BY (Signature) DATE COMPOSITE DESCRIPTION COMPOSITE DESCRIPTION
LINQUISHED BY (Signature) DATE COMPANY COMPOSITE DESCRIPTION
THE CALL OF THE PROPERTY OF TH
TIME SAMPLE COS
COMPANY
TOWN RECEIPT GOD
White - Laboratory; Piple State Control Co
White - Laboratory; Pink - Laboratory; Pink - Laboratory; Pink - Laboratory
Laboratory Call BROKEN LINTACT Dans
White - Laboratory; Pink - Laboratory; Canary - Project File: M.
White - Laboratory; Pink - Laboratory; Canary - Project File; Manila - Data Management
"dungement

REPORTING CONVENTIONS

DATA QUALIFIERS:

	Lab Qualifier	AFCEE Qualifier	Description
	J	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
-	N		Indicates presumptive evidence of a compound.
	В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
	E	J	Indicates that the result is above the maximum calibration range.
	*	The family of the second of th	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out

DATES

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

							•
							u.
			·				
	·						
						•	
				·			
	•	enegation *					
						,	

LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14137

SW 1312/5030B/8260B SPLP VOLATILE ORGANICS BY GC/MS

SDG#: 06B030A

	•			
				•
	4			
				**,
				e.
·	~			
			*	
				-

CASE NARRATIVE

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

SDG:

06B030A

SW 1312/5030B/8260B SPLP VOLATILE ORGANICS BY GC/MS

Three (3) soil samples were received on 02/03/06 for SPLP Volatile Organic analysis by Method 1312/5030B/8260B in accordance with USEPA SW846, 3rd ed.

1. Holding Time

Analytical holding time was met.

2. Tuning and Calibration

Tuning and calibration were carried out at 12-hour interval. All QC requirements were met.

3. Method Blank

Method blanks were free of contamination at half of the reporting limit.

4. Surrogate Recovery

Recoveries were within QC limit.

5. Lab Control Sample/Lab Control Sample Duplicate

Recoveries were within QC limit.

6. Matrix Spike/Matrix Spike Duplicate

No MS/MSD sample was designated in this SDG.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met.

LAB CHRONICLE SPLP VOLATILE ORGANICS BY GC/MS

					/	#11111111111111	59 11 11 11 11 11 11 11 11 11 11 11 11 11			
Client	: SES-TECH							-	SDG NO.	: 06B030A
	: CAMP PENDLETON, UST SITE 14137	UST SITE 14	137						Instrume	Instrument 1D : T-O01
			, II II II II II		***************************************			## 		[[
	•				WA.	WATER				
Client		Laboratory	aboratory Dilution	84	Analysis	Extraction	Sample	Calibration Prep.	on Prep.	
Sample ID		Sample 1D	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
1		* * * * * * * * * * * * * * * * * * * *	1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1111567) 11111156371111111
MBLK1W		V001B29a	-	¥.	02/15/0616:26	02/15/0616:26	RBV366	RAV257	V001B29	Method Blank
LCS1W		V001B29X		Ä	02/15/0614:32	02/15/0614:32	RBV363	RAV257	V001B29	Lab Control Sample (LCS)
COIW	•	V001B29Y	τ	W.	02/15/0615:11	02/15/0615:11	RBV364	RAV257	V001B29	LCS Duplicate
MBLK1S		SLB002SB		ΑN	02/15/0617:07	02/15/0617:07	RBV367	RAV257	V001B29	Method Blank
0004-075		8030-03	,	NA	02/15/0620:55	02/15/0620:55	RBV373	RAV257	V001B29	Field Sample
0004-078		8030-06	-	X,	02/15/0621:32	02/15/0621:32	RBV374	RAV257	V001B29	Field Sample
620-5000		8030-07	-	NA	02/15/0622:10	02/15/0622:10	RBV375	RAV257	v001B29	Field Sample

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

	,	
·		
		٠.
mission of		
	•	
		-

SW 1312/50308/82608 SPLP VOLATILE ORGANICS BY GC/MS

Client : SES-TECH Date Collected: 02/03/06 piect : CAMP PENDLETON, UST SITE 14137 h No. : 068030A pile ID: 0004-075 Date Received: 02/03/06
Date Extracted: 02/15/06 20:55 Date Analyzed: 02/15/06 20:55 Lab Samp ID: B030-03 Dilution Factor: 1 Lab File ID: RBV373 Matrix : WATER % Moisture : NA Instrument ID : T-001 Ext 8tch ID: V001829 Calib. Ref.: RAV257

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
	**		
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	МD	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2 5 5 5 .2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE	ND	5	.2
BROMOFORM	ND	5 5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND ND	5 5	.2 .2 .2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	· 5	.2 .2 .2 .2
C1S-1,2-DICHLOROETHENE	ND	· 5	.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
SROMOCHLOROMETHANE	ND	5	.2
LBENZENE	.51	.5	2
ENES	.83J	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	, ND	5	.5
STYRENE	ND	5	.2
VETRACHLOROETHYLENE	ND	5	2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND ·	5	2
VINYL ACETATE	ND .	50	.2 .5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND ND	5	.2
TERT-AMYL METHYL ETHER	ND ND	5	.2
TEXT ARTE PERMIT CIRER	ทบ	9	٠.
CURROCATE RABAMETÉTÉS	or organization	00 1 1417	

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1,2-DICHLOROETHANE-D4	106	65 - 135
TOLUENE-D8	102	<i>7</i> 5 - 125
BROMOFLUOROBENZENE	108	75 - 125

R.L.: Reporting limit
* : Out of QC

E : Exceeded calibration range

B : Found in associated method blank

Value between R.L. and MDL
Value from dilution analysis

0.0. : Diluted out

SW 1312/5030B/8260B SPLP VOLATILE ORGANICS BY GC/MS

Client : SES-TECH Date Collected: 02/03/06 Date Received: 02/03/06 Date Extracted: 02/15/06 21:32 : CAMP PENDLETON, UST SITE 14137 Project Batch No. : 06B030A Sample ID: 0004-078 Date Analyzed: 02/15/06 21:32 Dilution Factor: 1 Lab Samp ID: B030-06 Lab File ID: RBV374 Matrix : WATER : NA Ext Btch ID: V001B29 % Moisture Instrument ID : T-001 Calib. Ref.: RAV257

PARAMETERS	RESULTS (ug/l)	RL (ug/L)	MDL (ug/l)
1 1 5 TO YOU GOODTUANE	ND	5	.2
1,1,1-TRICHLOROETHANE	ND ND	1	.2
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
	ND	5	.2
1,1-DICHLOROETHENE	ND	.5	.2
1,2-DICHLOROETHANE	ND	. 5 5	.2
1,2-DICHLOROPROPANE	•	50	.2
METHYL ETHYL KETONE	ND	50	 5
2-HEXANONE	ND	50 50	5
4-METHYL-2-PENTANONE (MIBK)	ND		5
ACETONE	ND	50	.2
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE	ND	5	
BROMOFORM	ND	5 5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ИĎ	. 5	.2
CIS-1,2-DICHLOROETHENE	ND	[*] 5	.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
DIBROMOCHLOROMETHANE	ND	5	.2
ETHYLBENZENE	5.3	.5	.2
XYLENES	6.8	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
ETRACHLOROETHYLENE	ND	5	.2
TOLUENE	.65	.5	.2
TRANS-1, 2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	D	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	NĐ	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1,2-DICHLOROETHANE-D4	103	65 - 135
TOLUENE-D8	100	75 - 125
BROMOFLUOROBENZENE	104	75 - 125

R.L.: Reporting limit Out of OC

E : Exceeded calibration range Found in associated method blank : Value between R.L. and MDL

: Value from dilution analysis

D.O. : Diluted out

SW 1312/5030B/8260B SPLP VOLATILE ORGANICS BY GC/MS

Client : SES-TECH Date Collected: 02/03/06

lect : CAMP PENDLETON, UST SITE 14137 h No. : 068030A Project Date Received: 02/03/06

Date Extracted: 02/15/06 22:10 ္တာဂိုle ID: 0004-079 Date Analyzed: 02/15/06 22:10 Lab Samp ID: B030-07

Dilution Factor: 1 Lab File ID: RBV375 Matrix : WATER Ext 8tch 1D: V001B29 % Moisture : NA Instrument ID : T-001 Calib. Ref.: RAV257

•	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)

1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5 5
ACETONE	ND	50	.2
BENZENE	ND	.5	
BROMODICHLOROMETHANE BROMOFORM	ND	5 5	.2
BROMOMETHANE	ND ND		.2
CARBON TETRACHLORIDE	ND ND	5 5	.2
CHLOROBENZENE	ND · ND	.,	.2
CHLOROETHANE	ND ND	5 5	.2
CHLOROFORM	ND ND	5	.2
CHLOROMETHANE	ND	, š	.2
CIS-1,2-DICHLOROETHENE	ND	; š	.2
CIS-1,3-DICHLOROPROPENE	ND .	.5	.2
ARROMOCHLOROMETHANE	ND	.5	.2
LBENZENE	4.8	٠.5	.2
ÉNES	7.9	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	,5
STYRENE	ND	5	.2
*ATRACHLOROETHYLENE	ND	5	,2
TOLUENE	.63	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND "	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
	*	40 430	
1,2-DICHLOROETHANE-04	103	65 - 135	

75-125

98

R.L.	:	Reporting	limit

: Out of QC

BROMOFLUOROBENZENE

TOLUENE-D8

: Exceeded calibration range : Found in associated method blank : Value between R.L. and MDL : Value from dilution analysis

D.O. : Diluted out

QC SUMMARIES

.

SW 1312/5030B/8260B SPLP VOLATILE ORGANICS BY GC/MS

Client : SES-TECH Date Collected: NA Date Received: 02/15/06
Date Extracted: 02/15/06 16:26 Project : CAMP PENDLETON, UST SITE 14137 h No. : 068030A Date Analyzed: 02/15/06 16:26 Lab Samp ID: V001B290 Dilution Factor: 1 Lab File ID: RBV366 Matrix : WATER Ext Btch ID: V001829 % Moisture : NA Calib. Ref.: RAV257 Instrument ID : T-001

PARAMETERS	RESULTS	RL (1)	MDL
FARANCIERS	(ug/L)	(ug/L)	(ug/l,)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND ND	1	.2
1,1,2-TRICHLOROETHANE	ND.	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	,2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE	ND	5	.2
8ROMOFORM STATE OF THE STATE OF	ND	5	.3
BROMOMETHANE	ND	5	.2
CARSON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	· ND	5	.2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	[*] 5	.2
CIS-1,2-DICHLOROETHENE	ND	<i>;</i> 5	.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
DIBROMOCHLOROMETHANE	ND	5	.2
LBENZENE	ND	.5	.2
NES	ND	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ИD	5	.2
TETRACHLOROETHYLENE	ND	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
OURROCATE DARRIGHTON			

SURROGATE PARAMETERS	% RECOVERY	OC LIMIT

1,2-DICHLOROETHANE-D4	94	65 - 135
TOLUENE-D8	100	75 - 125
BROMOFLUOROBENZENE	108	75 - 125

R.L.: Reporting limit

; Out of QC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL
D : Value from dilution analysis
D.O.: Diluted out

.ט. : טונטנפט סטנ

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

BATCH NO.: METHOD:

068030A

SW 1312/50308/82608

DILUTION FACTOR: 1

DATE EXTRACTED:

DATE ANALYZED:

SAMPLE ID:

LAB SAMP ID:

LAB FILE ID:

WATER

MBLK1W

V001B29Q RBV366 02/15/0616:26

V001B29X

V001B29Y

RBV363

RBV364

02/15/0614:32 02/15/0615:11 02/15/0614:32 02/15/0615:11

DATE COLLECTED: NA

% MOISTURE:

02/15/0616:26 PREP. BATCH: V001B29 V001B29

CALIB. REF:

RAV257

RAV257

V001B29 RAV257

DATE RECEIVED: 02/15/06

NA

ACCESSION:

PARAMETER	BLNK RSLT (ug/L)	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	RPD (%)	QC LIMIT	MAX RPD
1,1-Dichloroethene	ND	10	9.03	90	10	9.22	92	.5	75 - 125	20
Benzene	ND	10	9.37	94	10	9.81	98	5	75 - 125	20
Chlorobenzene	ND	10	9.95	100	10	10.7	107	7	75 - 125	20
Toluene	ND	10	9.37	94	10	9.83	98	5	75 - 125	20
Trichloroethene	ND	10	10.2	102	10	10.6	106	4	75 - 125	20

SPIKE AMT BS RSLT BS SPIKE AMT BSD RSLT BSD QC LIMIT SURROGATE PARAMETER

(ug/L) % REC (ug/L) (ug/L) (ug/L) % REC (%) 1,2-Dichloroethane-d4 10 8.32 83 10 10 100 65-135 Toluene-d8 10 95 10.8 75-125 9.46 10 108 Bromofluorobenzene 10 99 .9.88 10 11.1 111 75-125

SW 1312/50308/8260B SPLP VOLATILE ORGANICS BY GC/MS

Date Collected: NA Client : SES-TECH Date Received: 02/15/06

Project : CAMP PENDLETON, UST SITE 14137
No. : 06B030A
le ID: MBLK1S Date Extracted: 02/15/06 17:07 Date Analyzed: 02/15/06 17:07

Lab Samp ID: SLB002SB Dilution Factor: 1 : WATER Matrix Lab File ID: RBV367 Ext Btch ID: V001B29 % Moisture : NA Instrument ID : T-001 Calib. Ref.: RAV257

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND CN	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND ND	5	.2
METHYL ETHYL KETONE	ND ND	50	.2
2-HEXANONE		50	5
	ND ND	50 50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50 50	5
ACETONE BENZENE		.5	.2
	ND	5	.2
BROMODICHLOROMETHANE	ND	5	.3
BROMOFORM	ND	5	.3 .2
BROMOMETHANE	ND ND	-5	.2
CARBON TETRACHLORIDE	ND · ND	.5 5	.2
CHLOROBENZENE	. ND	5	
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	. 5 . 5 . 5	.2
CHLOROMETHANE	ND	, ⁵	.2
CIS-1,2-DICHLOROETHENE	ND		.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
DIRROMOCHLOROMETHANE	ND ·	5	.2
LBENZENE	ND	.5	.2
NES	ND	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	. 2
*ETRACHLOROETHYLENE	ND	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-D1CHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

% RECOVERY	QC LIMIT
92	65 <i>-</i> 135
105	75 - 125
112	75-125
	92 105

R.L.: Reporting limit

: Out of QC

: Exceeded calibration range : Found in associated method blank
: Value between R.L. and MDL В J D : Value from dilution analysis

D.O. : Diluted out

					•
					e Cong
,					Av. (
		ı			
			•		
			÷		
•					1114
	,				
	unaddist* *		^		

LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14137

SW 1312/3520C/8270C SIM SPLP SEMI VOLATILE ORGANICS BY GC/MS

SDG#: 06B030A

CASE NARRATIVE

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

SDG:

06B030A

SW 1312/3520C/8270C SIM SPLP SEMI VOLATILE ORGANICS BY GC/MS

Three (3) soil samples were received on 02/03/06 for SPLP Semi Volatile Organic analysis by Method 1312/3520C/8270C SIM in accordance with USEPA SW846, 3rd ed.

1. Holding Time

Analytical holding time was met.

2. Tuning and Calibration

Tuning and calibration were carried out at 12-hour interval. All QC requirements were met.

3. Method Blank

Method blanks were free of contamination at half of the reporting limit.

4. Surrogate Recovery

Recoveries were within QC limit except Terphenyl-d14 in sample B030-03 was out of QC limit.

5. Lab Control Sample/Lab Control Sample Duplicate

Recoveries were within QC limit.

6. Matrix Spike/Matrix Spike Duplicate

No MS/MSD sample was designated in this SDG.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met with the aforementioned exception. Samples B030-06 and B030-07 were analyzed with 10x dilution due to matrix interference.

Two analytes in B030-03, four analytes in B030-06, and two analytes in B030-07 were manually reintegrated to correct for improper integration. Chromatograms of before and after manual integration for B030-06 was submitted for review.

LAB CHRONICLE SPLP SEMI VOLATILE ORGANICS BY GC/MS

Clipht	Client SES-TECR								SDG NO.	: 068030A
	: CAMP PENDLETON, UST SITE 14137	UST SITE 141	137						Instrume	Instrument ID : T-052
## ## ## ## ## ## ## ## ## ## ## ## ##						######################################	14 15 19 18 11 11 11 11	ii 16 17 18 19 19 11 11 11 11 11		
	•				WATER	R				
Client		Laboratory	Dilution	ж	Analysis	Extraction	Sample	Calibration Prep.	n Prep.	
Sample 1D		Sample ID	Factor	Moist	Datelime	DateTime	Data FN	Data FN	Batch	Notes
		1 1 1 1 1 1 1 1	1 1	1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1 1 1	(
MBLK 1W		SVB030WB	-	XX AX	02/16/0618:15	02/15/0619:00	RBK231	RAK026	SV8030W	Method Blank
LCS1W		SVB030WL		N.	02/16/0618:34	02/15/0619:00	RBK232	RAK026	SVB030W	Lab Control Sample (LCS)
LCD1W	-	SVB030WC	/	NA	02/16/0618:52	02/15/0619:00	RBK233	RAK026	SVB030W	LCS Duplicate
MBLK1S		SPB002SB	,	NA	02/16/0619:11	02/15/0619:00	RBK234	RAK026	SVB030W	Method Blank
0004-075		8030-03	-	ΝΑ	02/16/0619:49	02/15/0619:00	RBK236	RAK026	SVB030W	Field Sample
0004-078		B030-06T	10	₩	02/17/0617:20	02/15/0619:00	RBK261	RAK026	SVB030W	Diluted Sample
620-5000		B030-07T	10	МA	02/17/0617:38	02/15/0619:00	RBK262	RAK026	SVB030W	Diluted Sample

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

	,		-
· .	. Produces		
			- -

SW 1312/3520C/8270C SIM SPLP SEMI VOLATILE ORGANICS BY GC/MS

: SES-TECH Client Date Collected: 02/03/06 ch No. : 06B030A Date Received: 02/03/06 Date Extracted: 02/15/06 19:00 anoject inple ID: 0004-075 Date Analyzed: 02/16/06 19:49 Dilution Factor: 1 Lab Samp ID: 8030-03 : WATER Lab File ID: RBK236 Matrix Ext Btch ID: SVB030W % Moisture : NA Instrument ID : T-052 Calib. Ref.: RAK026

			=======
	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
***************************************	***		
ACENAPHTHENE	1.3	1	.2
ACENAPHTHYLENE	ND	1	.2
ANTHRACENE	ND	2	.2
BENZO(A)ANTHRACENE	ND	2	.2
BENZO(A)PYRENE	ND	1	.2
BENZO(B)FLUORANTHENE	ND	1	.2
BENZO(K)FLUORANTHENE	ND	2	.2
BENZO(G,H,I)PERYLENE	ND	1	.2
CHRYSENE	ND	2	.2
DIBENZO(A,H)ANTHRACENE	ND	1	.2
FLUORANTHENE	ND	2	.2
FLUORENE	4	2	.2
INDENO(1,2,3-CD)PYRENE	ND	1	.2
NAPHTHALENE	7.7	1	.2
PHENANTHRENE	6.2	1	.2
PYRENE	ND	2	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

25*

50-130

RL: Reporting Limit

TERPHENYL-D14

sw 1312/3520c/8270c sim SPLP SEMI VOLATILE ORGANICS BY GC/MS

Date Collected: 02/03/06 Client : SES-TECH Project : CAMP PENDLETON, UST SITE 14137 Date Received: 02/03/06 Batch No. : 06B030A Date Extracted: 02/15/06 19:00 Date Analyzed: 02/17/06 17:20 Sample ID: 0004-078 Dilution Factor: 10 Lab Samp ID: 8030-06T Matrix : WATER Lab File ID: RBK261 % Moisture : NA Ext Btch ID: SVB030W Instrument ID : T-052

	RESULTS	RL -	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
ACENAPHTHENE	6.31	10	2
ACENAPHTHYLENE	ND	10	2
ANTHRACENE	ND	20	2
BENZO(A)ANTHRACENE	ND	20	2
BENZO(A)PYRĖNE	ND	10	2
BENZO(B)FLUORANTHENE	ND	10	2
BENZO(K)FLUORANTHENE	ND	20	2
BENZO(G,H,I)PERYLENE	ND	10	2
CHRYSENE	ND	20	2
DIBENZO(A, H)ANTHRACENE	ND	10	2
FLUORANTHENE	ND	20	2
FLUORENE	23	20	2
INDENO(1,2,3-CD)PYRENE	ND	10	2
NAPHTHALENE	65	10	2
PHENANTHRENE	43	· 10	2
PYRENE	2.2J	. 20	2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

................. 50-130 DO TERPHENYL-D14

RL: Reporting Limit

Calib. Ref.: RAK026

SPLP Extraction Date: 02/10/06 18:20

DO: Diluted Out.

SW 1312/3520C/8270C SIM SPLP SEMI VOLATILE ORGANICS BY GC/MS

CLient : SES-TECH Date Collected: 02/03/06
ect : CAMP PENDLETON, UST SITE 14137 Date Received: 02/03/06
white No. : 068030A Date Extracted: 02/15/06

 Ch No. : 06B030A
 Date Extracted: 02/15/06 19:00

 Sample ID: 0004-079
 Date Analyzed: 02/17/06 17:38

 Lab Samp ID: B030-07T
 Dilution Factor: 10

Lab File ID: RBK262 Matrix : WATER
Ext Btch ID: SVB030W % Moisture : NA
Calib. Ref.: RAK026 Instrument ID : T-052

RESULTS	RL -	MDL
(ug/L)	(ug/L)	(ug/L)
4.91		2
ИD	10	2
ND	20	2
ND	20	2
ND	10	2
ND	10	2
ND	20	2
ND	10	2
ND	20	2
ND .	10	2
ND	20	2
16J	20	2
· ND	10	2
54	10	2
25	- 10	2
ND	20	2
	(ug/L) 4.9J ND	(ug/L) (ug/L)

ROGATE PARAMETERS	% RECOVERY	QC LIMIT
PROGATE PARAMETERS	* = # = = * * * * *	
CERPHENYL-D14	DO	50-130

RL: Reporting Limit

%PLP Extraction Date: 02/10/06 18:20

DO: Diluted Out.

QC SUMMARIES

	,			•
				\$ Z
		·		-

SW 1312/3520C/8270C SIM SPLP SEMI VOLATILE ORGANICS BY GC/MS

EMALX

744.3	Client : SES-TECH Project : CAMP PENDLETON, h No. : 06B030A ple ID: MBLK1W	UST	SITE	14137	Date Date Date	Collected: Received: Extracted: Analyzed: ion Factor:	02/15/06 02/15/06 02/16/06	19:00
	Lab Samp ID: SVB030WB Lab File ID: RBK231 Ext Btch ID: SVB030W Calib. Ref.: RAK026		_====	======	Matrî % Moi Instr	x : sture : ument ID :	WATER NA T-052	=====
	PARAMETERS			F	ESULTS (ug/L)	RL (ug/L)		MDL (ug/L)
	ACENAPHTHENE ACENAPHTHYLENE				ND ND	1 1		.2 .2
	ANTHRACENE				ND	ż		.2
	BENZO(A)ANTHRACENE				ND	2 2		.2
	BENZO(A)PYRENE				ND	1		.2
	BENZO(B)FLUORANTHENE				ND	1		.2
	BENZO(K)FLUORANTHENE				ND	2		.2
	BENZO(G,H,1)PERYLENE				ND	1		.2
	CHRYSENE				ND ND	2 1		.2
	DIBENZO(A,H)ANTHRACENE FLUORANTHENE				ND	2		.2
	FLUORENE				ND	2		.2
	INDENO(1,2,3-CD)PYRENE				ND	1		.2
	NAPHTHALENE				ND	1		.2
	PHENANTHRENE				ND	1		.2
	PYRENE				ND	2		.2

SURROGATE PARAMETERS % RECOVERY QC LIMIT
TERPHENYL-D14 122 5.0-130

RL: Reporting Limit

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

SES-TECH

CAMP PENDLETON, UST SITE 14137 PROJECT:

06B030A BATCH NO.:

METHOD:

SW 1312/3520c/8270C SIM

MATRIX: DILUTION FACTOR: 1

WATER

1

1

MBLK1W SAMPLE ID: LAB SAMP ID:

SVB030WB

RBK231

SVB030WL

SVB030WC **RBK233** RBK232

02/15/0619:00 02/15/0619:00

02/15/0619:00 02/16/0618:52 DATE COLLECTED: NA

% MOISTURE:

DATE RECEIVED: 02/15/06

NΑ

DATE ANALYZED: PREP. BATCH: CALIB. REF:

DATE EXTRACTED:

LAB FILE ID:

SVB030W RAK026

02/16/0618:34 SVB030W RAK026

SVB030W RAK026

02/16/0618:15

ACCESSION:

PARAMETER	BLNK RSLT (ug/L)	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	RPD (%)	QC LIMIT	MAX RPD (%)
Acenaphthenė	ND	10	5.74	57	10	6.68	67	· 15	40-130	30
Acenaphthylene	ND	10	6.3	63	10	7.14	71	12	40-130	30
Anthracene	ND	10	7.25	73	10	8.39	84	15	50-130	30
Benzo(a)anthracene	ND	10	6.52	65	10	7.37	74	12	50-130	30
Benzo(a)pyrene	ND	10	6.69	67	10	7.43	74	11	50-130	30
Benzo(b)fluoranthene	ND	10	7.87	79	10	8.72	87	10	50 - 130	30
Benzo(k)fluoranthene	ND	10	5.12	51	10	5.75	58	12	30-150	30
Benzo(g,h,i)perylene	ND	10	6.43	64	10	7.22	72	12	50-130	30
Chrysene	ND	10	6.33	63	10	7.15	71	12	50-130	30
Dibenzo(a,h)anthracene	ND	. 10	6.58	66	10	7.33	73	11	40-140	30
Fluoranthene	ND	10	7.34	73	10	8.35	84	13	50-130	30
Fluorene	ND	10	6.53	65	10	7.52	75	14	40-130	30
Indeno(1,2,3-cd)pyrene	ND	10	6.6	66	10	7.28	73	10	30-140	30
Naphthalene	ND	10	5.65	57	10	6.38	64	12	30-130	30
Phenanthrene	ND	10	6.94	69	10	7.96	80	14	40-130	30
Pyrene	ND	10	7.21	72	10	8.25	82	13	40-130	30

	SPIKE AMT	BS RSLT	BS	SPIKE AMT	8SD RSLT	BSD	QC LIMIT
SURROGATE PARAMETER	(ug/L)	(ug/L)	% REC	(ug/L)	(ug/l.)	% REC	(%)
Ternhenyl -d14	10	9.32	93	10	10.7	107	50-130

SW 1312/3520C/8270C SIM SPLP SEMI VOLATILE ORGANICS BY GC/MS

Date Collected: NA Client : SES-TECH

Date Received: 02/15/06 ect : CAMP PENDLETON, UST SITE 14137

.ch No. : 06B030A Date Extracted: 02/15/06 19:00 Date Analyzed: 02/16/06 19:11 Sample ID: MBLK1S

Lab Samp ID: SPB002SB Dilution Factor: 1 : WATER Lab file ID: RBK234 Matrix

% Moisture : NA Ext Btch ID: SVB030W Instrument ID : T-052 Calib. Ref.: RAK026

	RESULTS	RL '	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
ACENAPHTHENE	ND	1	.2
ACENAPHTHYLENE	ND	1	.2
ANTHRACENE	ND	2	.2
BENZO(A)ANTHRACENE	ND	2	.2
BENZO(A)PYRENE	ND	1	.2
BENZO(B)FLUORANTHENE	ND	1	.2
BENZO(K)FLUORANTHENE	ND	2	.2
BENZO(G,H,I)PERYLENE	ND	1	.2
CHRYSENE	ND	2	.2
DIBENZO(A,H)ANTHRACENE	ND	1	.2
FLUORANTHENE	ND	2	.2
FLUORENE	ND	2	.2
INDENO(1,2,3-CD)PYRENE	. ND	1	.2
NAPHTHALENE	ND	1	.2
PHENANTHRENE	ND	· 1	.2
PYRENE	ND	. 2	.2

CONTROCATE PARAMETERS	% RECOVERY	QC LIMIT
TERPHENYL-D14	111	50~130

RL: Reporting Limit

%PLP Extraction Date: 02/10/06 18:20

				•
				* a
		•		
			•	
	•			
				34.7.7
				1112 ⁹
•				
	to considerate the constant of			
•				
				•
	· · · · · · · · · · · · · · · · · · ·			
				-

LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14137

METHOD 1312/3520C/8015B SPLP PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 06B030A

CASE NARRATIVE

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

SDG:

06B030A

METHOD 1312/3520C/8015B SPLP PETROLEUM HYDROCARBONS BY EXTRACTION

Three (3) soil samples were received on 02/03/06 for SPLP Petroleum Hydrocarbons by Extraction analysis by Method 1312/3520C/8015B in accordance with SW846 3RD Edition.

1. Holding Time

Analytical holding time was met. SPLP extraction was performed on 02/10/06 and completed on 02/11/06. 3520C extraction was performed on 02/15/06 and completed on 02/16/06.

2. Calibration

Initial calibration was seven points for Diesel. %RSDs were within 20%. Continuing calibrations were carried out at 12-hour intervals and all recoveries were within 85-115%.

3. Method Blank

Method blanks were free of contamination at half of the reporting limit.

4. Surrogate Recovery

Hexacosane recovery in sample B030-03, both in the initial and re-analysis, was out of QC limit due to matrix interference; however, Bromobenzene met the QC criteria. Surrogate recovery in sample B030-07 could not be evaluated due to dilution. All others met the QC criteria.

5. Lab Control Sample/Lab Control Sample Duplicate

All recoveries were within QC limits.

6. Matrix Spike/Matrix Spike Duplicate

No MS/MSD sample was designated in this SDG.

7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met with the aforementioned exception. Sample results were quantitated from C10 to C24 using Diesel (C10-C24) calibration factor.

All the samples displayed diesel-like fuel pattern.

LAB CHRONICLE SPLP PETROLEUM HYDROCARBONS BY EXTRACTION

Client	Client : SES-TECH				3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				SDG NO.	. 068030A
Project	: CAMP PENDLETON, UST SITE 14137	UST SITE 14	137						Instrume	Instrument 10 : GCTO50
11			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	11 13 14 14 16 16 17						
	•				LA₩	WATER				
Client		Laboratory	Dilution	*	Analysis	Extraction	Sample	Calibration Prep.	n Prep.	
Sample 1D		Sample 10	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
		*	1 1 1 1 1	1 1 1		1 1 4 1 2 4 2 5 5 6 7 8	1 1 1 1			111111111111111111111111111111111111111
MBLKIN		DSB029WB	•	NA	02/16/0615:28	02/15/0619:00	TB16008A	TB16002A	DSB029W	Method Blank
LCS1W	_	DSB029WL		NA	02/16/0621:04	02/15/0619:00	TB16016A	TB16014A	DSB029W	Lab Control Sample (LCS)
LCD1W	Laure A	DSB029WC	ų	XX AX	02/16/0621:46	02/15/0619:00	TB16017A	TB16014A	DSB029W	LCS Duplicate
MBLK1S		SPB002SB	4	A.N	02/16/0616:10	02/15/0619:00	TB16009A	TB16002A	DSB029W	Method Blank
0004-075		8030-03	6	NA NA	02/16/0616:52	02/15/0619:00	TB16010A	TB16002A	DSB029W	Field Sample
0004-078		8030-06	-	Ä	02/16/0617:34	02/15/0619:00	TB16011A	TB16002A	DSB029W	Field Sample
620-7000		8030-07T	6	Ä	02/16/0618:16	02/15/0619:00	TB16012A	TB16002A	DSB029W	Diluted Sample

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

		•
		14
		i s
		2
-		
	•	
		J
		-

METHOD 1312/3520C/8015B SPLP PETROLEUM HYDROCARBONS BY EXTRACTION

	============		
Client : SES-TECH	Date	Collected:	02/03/06
্ৰত্যুect : CAMP PENDLETON, UST SIT	E 14137 Date	Received:	02/03/06
ch No. : 06B030A	Date	Extracted:	02/15/06 19:00
Jample ID: 0004-075	Date	Analyzed:	02/16/06 16:52
Lab Samp ID: B030-03		ion Factor:	
Lab File ID: TB16010A	Matri	x :	WATER
Ext Btch ID: DSB029W			NA
Calib. Ref.: TB16002A		ument ID :	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	===========	=======================================	:======================================
	RESULTS	RL	MDL
PARAMETERS	(mg/L)	(mg/L)	(mg/L)
			(mg/L/
DIESEL	5	1	.025
	,	• •	.02,7
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
***************************************		~~ 61711	
HEXACOSANE	41*	65 - 135	
- · · · ·	-71	05 155	,

: Reporting Limit ameter H-C Range sel C10-C24 Parameter Diesel

: Out of QC limit due to matrix interference

### METHOD 1312/3520C/8015B SPLP PETROLEUM HYDROCARBONS BY EXTRACTION



Client : SES-TECH Date Collected: 02/03/06
Project : CAMP PENDLETON, UST SITE 14137 Date Received: 02/03/06
Batch No. : 068030A Date Extracted: 02/15/06 19:00

Batch No. : 06B030A Date Extracted: 02/15/06 19:00 Sample ID: 0004-078 Date Analyzed: 02/16/06 17:34 Lab Samp ID: B030-06 Dilution Factor: 1

 Lab Samp ID: B030-06
 Dilution Factor: 1

 Lab File ID: TB16011A
 Matrix : WATER

 Ext Btch ID: DSB029W
 % Moisture : NA

 Calib. Ref.: TB16002A
 Instrument ID : GCT050

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE 102 65-135

RL : Reporting Limit
Parameter H-C Range
Diesel C10-C24





Client : SES-TECH Date Collected: 02/03/06 piect : CAMP PENDLETON, UST SITE 14137 Date Received: 02/03/06

th No. : 06B030A Date Extracted: 02/15/06 19:00 Date ID: 0004-079 Date Analyzed: 02/16/06 18:16

 Lab Samp ID: B030-07T
 Dilution Factor: 10

 Lab File ID: TB16012A
 Matrix : WATER

 Ext Btch ID: DSB029W
 % Moisture : NA

 Calib. Ref.: TB16002A
 Instrument ID : GCT050

 RESULTS
 RL
 MDL

 PARAMETERS
 (mg/L)
 (mg/L)
 (mg/L)

 DIESEL
 34
 1
 .25

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE DO 65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

DO : Diluted Out

	,			
		•		e Meg
				*
		•		
				**
•				
•	· · · · · · · · · · · · · · · · · · ·	-		
			. *	
				2
				-



# QC SUMMARIES

				•
•				
			·	
		1		<i>2</i> *
	,			
	·			
		•		
			•	

### METHOD 1312/3520C/8015B SPLP PETROLEUM HYDROCARBONS BY EXTRACTION



Date Collected: NA
Date Received: 02/15/06 Client : SES-TECH Project : CAMP PENDLETON, UST SITE 14137 h No. : 068030A Date Extracted: 02/15/06 19:00 ∴mple ID: MBLK1W Date Analyzed: 02/16/06 15:28 Lab Samp ID: DSB029WB Dilution Factor: 1 Lab File ID: TB16008A : WATER Matrix Ext Btch ID: DSB029W % Moisture Calib. Ref.: TB16002A Instrument ID : GCT050 RESULTS RL MDL **PARAMETERS** (mg/L) (mg/L) (mg/L) ---------DIESEL ND .025 SURROGATE PARAMETERS % RECOVERY QC LIMIT _____ -------HEXACOSANE 112 65-135 : Reporting Limit Parameter H-C Range

Diesel

C10-C24





CLIENT: PROJECT: BATCH NO.: SES-TECH

CAMP PENDLETON, UST SITE 14137

06B030A

METHOD 1312/3520C/8015B

METHOD: 

MATRIX: DILUTION FACTOR: 1

WATER

% MOISTURE:

NA

SAMPLE ID: LAB SAMP ID: LAB FILE ID:

DATE EXTRACTED:

MBLK1W

DSB029WB

DSB029WL TB16016A

DSB029WC

TB16017A

TB16008A 02/15/0619:00

02/15/0619:00 02/15/0619:00 02/16/0615:28

ND

.25

DATE COLLECTED:

02/16/0621:04 02/16/0621:46

DATE RECEIVED: 02/15/06

DATE ANALYZED: PREP. BATCH: CALIB. REF:

DSB029W TB16002A DSB029W TB16014A

DSB029W TB16014A

ACCESSION:

PARAMETER ------Diesel

BLNK RSLT SPIKE AMT (mg/L) (mg/L)

BS RSLT BS (mg/L)% REC

4.53

SPIKE AMT (mg/L)91 5 **BSD RSLT** (mg/L)4.62

BSD % REC 92

RPD QC LIMIT MAX RPD (%) (%) 2 -65-135

(%) 30

Hexacosane

SPIKE AMT BS RSLT SURROGATE PARAMETER (mg/L) (mg/L)

BS % REC .288 115

5

SPIKE AMT (mg/L) .25 BSD RSLT BSD (mg/L)

.287

QC LIMIT % REC (%) 115

65-135

### METHOD 1312/3520C/8015B SPLP PETROLEUM HYDROCARBONS BY EXTRACTION



: SES-TECH Date Collected: NA Date Received: 02/15/06 Project : CAMP PENDLETON, UST SITE 14137 h No. : 06B030A Date Extracted: 02/15/06 19:00 Date Analyzed: 02/16/06 16:10 _mple ID: MBLK1S Lab Samp ID: SPB002SB Dilution Factor: 1 : WATER : NA Lab File ID: TB16009A Matrix Ext Btch ID: DSB029W % Moisture Calib. Ref.: TB16002A Instrument ID : GCT050

 PARAMETERS
 RESULTS
 RL
 MDL

 0 mg/L)
 (mg/L)
 (mg/L)

 0 mg/L)
 0 mg/L)
 0 mg/L)

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE 107 65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

				-
				er Starting
		,		2
•	· Victorian ·	-		
	,			
			٠	1

# APPENDIX D EXCAVATION COMPACTION REPORT

### LIMITATIONS

The geotechnical services outlined in this report have been conducted in accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in this area. No warranty, expressed or implied, is made regarding the observations and conclusions expressed in this report. The reported test results represent the relative compaction and moisture content at the locations tested. It is important to note that the precision of field density tests and the modified Proctor dry density tests is not exact and variations should be expected. The reported locations and depths of the density tests are estimated based on correlations with the site surroundings. Further accuracy is not implied.

We appreciate the opportunity to be of service on this project. Should you have any questions related to this report, please contact the undersigned.

Sincerely,

NINYO & MOORE

Jeffrey T. Kent, P.E. Project Engineer

Mark Cuthbert, P.E. Principal Engineer

DLP/JTK/MC/ag/gg

Distribution: (2) Addressee

Attachments: Table 1 – Summary of Field Density Tests

Table 2 - Modified Proctor Density Test Results

No. 66143

Table 3 – Expansion Index Test Results

* Ohuj	

SUMMARY OF FIELD DENSITY TESTS

							TAREF	-		CZ L	100700701		3
								4	TEST OF:		COMPAC	103/96001 COMPACTED EILL	
Z Z	Test	Date	Test ocation	Depth	Soil	Wet	Field	Dry	Proctor	Optimim	Relative	Specified	
į	5			€	S So.	Density (pet)	Moisture (%)	Density (pcf)	Density (pcf)	Moisture Content (%)	Compaction (%)	Кезапус Сотрастоп	Remarks
#.	CF	2/1/06	Building 1441	0.3	-	0.00					,	(%)	
<b>*</b> 2	ť	2/1/06	Building 1441	2 0	- -	0.721	5.9	116.2	122.0	11.5	95	90 - 95	
3#	Ę	2/1/06	Decide	2	7	124.6	8.5	114.8	122.0	11.5	94	90 - 95	
3	; <del>[</del>	20,175	Dunaing 144]	4.0		131.9	12.2	117.6	122.0	11.5	96	90 - 05	
3	j [	00/1/2	Building 144]	3.0	-	133.1	10.2	120.8	122.0	11.5	60	50 00	
#5	נ	90/1/7	Building 1441	2.0	_	130.9	10	0.0001	0.001	2	7.7	20-23	
#5	Ü	2/1/06	Building 1441	0	-	124.2	7.0	1.0.0	122.0	11.5	86	90 - 95	
7#	င်	2/1/06	Building 1441	-	-	77.4.7	9; 	13.3	122.0	11.5	93	90 - 95	
#8	CF	2/1/06	Building 1441	2 6	- -	C.671	7117	116.3	122.0	11.5	95	56 - 06	
ま	ť	2/1/06	Building 1441	2.0	- -	8.621	6.6	114.5	122.0	11.5	94	90~95	
10#	ä	2/3/06	Building 14137	0.5	- -	129.6	10.9	116.9	122.0	11.5	96	90 - 95	
#=	ti	2/3/06	Building 14124	5.0	_	124.0	6.6	112.8	122.0	11.5	92	90 - 95	
12#	변	3/3/06	Deliality 14137	5.0	_	129.8	11.8	1.911	122.0	11.5	95	90 - 05	
13#	; <del>(</del>	2000	Bullaing 14137	4.0	-	126.8	12.1	113.1	122.0	115	60	50 00	
	ן ל	2/3/00	Building 14137	4.0	ı	130,7	12.0	1167	122.0	3		20 - 23	
#	5	2/3/06	Building 14137	3.0	-	130.0	0 01		122.0	11.3	22	90 - 95	
15#	ť	2/3/06	Building 14137	,0	†-	130.1	10.7	117.3	122.0	11.5	96	90 - 95	
10#	۲,	2/3/06	Building 14137	-	1-	130.1	1.0	118.2	122.0	11.5	97	90 - 95	
17*	CF	2/3/06	Building 14137	200	1-	122.0	970	117.9	122.0	11.5	97	90 - 95	
*81	CF	2/7/06	Building 14131	6.5	1-	6.621	1.6	113.6	122.0	11.5	93	90-95	
19#	Ç.	2/7/06	Building 14131	3	╢.	132.4	10.6	119.7	122.0	11.5	86	90 - 95	
20#	ξĊ	2/7/06	Building 14131	); 	1	129.8	10.4	117.6	122.0	11.5	96	90 - 95	
21#	Ü	Ţ-	Building 14121	3.0	-	131.8	10.5	119.3	122.0	11.5	86	90-06	
22#	5	1	Building 14131	0.7	_	131.1	14.8	114.2	122.0	11.5	94	90 - 95	
23#	ť	T	D	7.0	-	133.8	12.1	119.4	122.0	11.5	86	90 00	
Ä	l'o	$\Box$	Duilding 14131	0.1	_	132.8	6.7	121.1	122.0	11.5	06	50 00	
VI	1	1	יסיווטווון (413)	0:0	-	133.5	10.1	121.3	122.0	11.5	00	20.00	
	7							Anong			72	50 - 05	

* The Performed by Nuclear Gauge method (ASTM D2922 and D3017)

* The performed by Sand Cone method (ASTM D 1556)

96

Average Relative Compaction =

### Table 2 - Modified Proctor Density Test Results

Soil	Description	Dry	Optimum
Type		Density	Moisture Content
No.		(pcf)	(%)
1	Grayish Brown Clayey SAND	122.0	11.5

### Table 3 - Expansion Index Test Results

Soil Type No.	Expansion Index	Expansion Index	Specification
1	Very Low	16	<20

### **APPENDIX E**

LABORATORY ANALYTICAL REPORTS, FIELD SAMPLING LOGS, AND NON-HAZARDOUS MATERIAL HAULING MANIFESTS FOR WELL INSTALLATION AND MARCH 2006 GROUNDWATER SAMPLING EVENT

## FIELD WATER LEVEL MEASUREMENTS

Date: 3114106	Project Name: UST Site 14137	
Personnel: UA (IS	Project OFS: 2973 (2)40	_

Weather: Sunny Comments

Wall D	Depth to Water from	Depth to Sediment from	
Well I.D.	Measuring Point (feet)	Measuring Point	Comments
Mul-I	6.84	(feet)	
$\frac{V(W-1)}{W(W-1)}$	1 200	24.64	
101W-2	7.29	24.64	
1VW-3	7.66	23.4	
MW5	7.70	15.18	
MWG	6.74	14.3	
MW-7	7.82	14.8	
•			
_		-	

	5 46		6 F 6 P 1 T 1 T 1					· · · · · · · · · · · · · · · · · · ·	
	LC	)W-FLO	<u>N PURC</u>	SING A	<u>NND SA</u>	MPLIN	<u>G DATA</u>	SHEE	T
Proj	ect Name	: <u>UST 5</u>	ite 14	37	We	ll Number	: MU	$OI_{-}$	
Projec	t Number	: 2973	0040	)		Equipment	: Horik	$\alpha$ ()	1-22
	Date	314104	2		_	Sample ID	: 000H		Time:       9
Site Er	ngineer(s)	Lis	ds		-		: Dir		
					<u> </u>				
Referenc	ce: Top of C	asing	Before	After	Tota	l Volume F	ourged (mL)	:	<u>}</u>
Depth to	Water (ft)		6.93			= (	2.4 KI	(p) + (	<del>(</del> 70
Depth of			24.6	2			( ) ( )	<b>~</b> /	
8	Top of Scre	en (ft)	<del></del>	_	·	System \	/olume (mL)	= (2.4*H)+	-470
Screen L Pump De			102		2 /ml /# -	بامد معاطية	where	/4/08 LD \	
Pump Ra			100 n	Milmin	Z. TITIL/IL -		ıme per foot h of tubing ir		
Sample F	oump Rate		LOOM		470 mL =		lume + Flow		olume
System \	/olume (mL	)	508	<del>-</del> -					
			Dissolved	_				Cum.	
Time	pН	Conductivity (umhos)	Oxygen	Temp.	ORP (mv)	Turbidity		Volume	Comments
10		(4111100)	(mg/L)	(°C)	(1117)	(NTU)	Water (ft)	(mL)	
035	7.10	1000							Dunpon
TOR	7.19	1390	1.00	19.19	-14	190.0	7.05	300	1 0
1101	7.12	1390	0.98	19.30	- 14	196.0	7.18	600	
1109	1.09	1400	0.56	19.30	-73	200.0	7.26	900	
1107	7.06	1400	0.20	19.34	-12	2000	7.38	1200	
1110	75.04	1400	0.00	19.35	7 11	203.0	7.49	1500	
1113	7.04	1400	0.00	P1. 35	<del>-71</del>	204.0	7.59	1800	
1116									stable
II P									alketsany
				$-\langle \mathcal{A}  $		2			
						1-64	_		
		···			A	79			
Stability:	± 0.2 units	±5%	± 0.2 mg/L	±3%	± 20 mV	± 10 %			
łach Fe ²⁺ _	n_	<u> </u>							
	, ,								normalistical designation of the second seco
Samples w	ere collecte	ed directly from	m pump unle	ess otherw	vise noted.				anno de la companya d
William Control of the Control of th									and the second

	LC	W-FLOV	V PURC	SING A	ND SA	MPLIN	G DATA	SHEE		
		UST S			We	ll Numbe	r:	4w:	2	
Projec		2903.			<del></del>	Equipmen		7 ba	()-22	
<b></b> =		311710	Xo	<u> </u>			): <u>ADD</u>	1-121	Time: 2	<u> </u>
Site Er	ngineer(s)	Lib,	07		(	Contracto	r:			
Referenc	e: Top of C	asing	Before	After	Tota	l Volume l	Purged (mL)	: 16	<i></i>	
M -	Water (ft)		7.36	7.62	l	96 -	(2.4)(	11)+4	10	· · · · · · · · · · · · · · · · · · ·
Depth of		/m>	24.6	H						
Screen L	Top of Screen (ft)	een (π)	3	_		System \	Volume (mL) where	= (2.4*H)+	-470	
Pump De			<u>"\"</u>	-	2.4mL/ft =	tubina vol	wnere ume per foot	(1/8" I.D.)		
Pump Ra			100 mc	lmin			th of tubing in			
8	Pump Rate		100 mc	min	470 mL =	Bladder vo	lume + Flow	thru cell vo	olume	
System v	/olume (mL	<i>)</i>	496	_		_	-			
Time	pН	Conductivity	Dissolved	Temp.	ORP	Turbidity	Depth to	Cum.	_	
711110	Pii	(umhos)	Oxygen (mg/L)	(°C)	(mv)	(NTU)	Water (ft)	Volume (mL)	Commen	ıts
1142									amo	
1145	7.07	1820	6.24	20.33	-62	40.9	7.42	<i>30</i> 0	1-21-6	<u> </u>
1148 7as 1820 0.12 20134					-66	42.3	7.48	600		
1151	105	1830	0.09	20.34	700					
1154	$\frac{108}{100}$	1830	000	0.34	-69	308	17.54	1200		
1157	-113	1830		<u>20.33</u>	-73	38.9	7.58	1500		
1203	1.10	1830	000	<u>20.33</u>	- 12	31.1	1.02	KOD		
1200									Stalle	
1200									11180 Dan	φ
			1							
				$\prec \subseteq$		-	2			
					X 9	3				
	İ									
Stability:	± 0.2 units	±5%	t 0.2 mg/L	±3%	± 20 mV	± 10 %				
lach Fe²⁺_	<u>n)</u>	A						<u> </u>	-	The second secon
Samples w	ere collecte	ed directly fron	n pump unle	ess otherw	vise noted.					

	LC	)W-FLO	N PUR	GING /	AND SA	MPLIN	G DATA	A SHEE	
		: <u>UST                                   </u>			We	ell Numbe	r: <u> </u>	lw3	, >
Projec		: <u>2973</u>		1	!	Equipmen	t: Hor	iba	0-22
	Date	:_3114	100		<del></del>	Sample ID	): <u> </u>		Time: 1406
Site E	ngineer(s)	: LB	15			Contracto	r: <u>V</u> on	<u>.                                    </u>	
Referen	ce: Top of C	Casing	Before	After		al Volume f	Purged (mL	): <u> </u> 8	<u> </u>
8	Water (ft)		7076	B.05	1 5	18 = C	24)(16	)+47	0
Depth of	, ,	(6)	23.5	Ŧ		_	- · ·	,	
	Top of Screen.ength (ft)	een (π)		E CLAS		System \	/olume (mL)	= (2.4*H)+	+470
Pump De			26		2 4ml /ft =	: tubina voli	where ume per foot	- / 1 / 0 # 1 To \	
Pump Ra	ate		100m	4min			h of tubing i		
· -	Pump Rate		100 m	7min	470 mL =		lume + Flow		olume
System \	/olume (mL	)	<u> 508</u>	-					
		Conductivity	Dissolved	Temp.	<b>^</b>			Cum.	
Time	рH	(umhos)	Oxygen	(°C)	ORP (mv)	Turbidity (NTU)	Depth to Water (ft)	Volume	Comments
1342			(mg/L)	(0)	(11.77)	(1110)	water (it)	(mL)	
1345	712	108/2	(0/10	10, 6	146				punjan
1348	115	1080	0.40	18:68	40	26.8	7.81	360	,
1351	7.6		0.00	18,66		29.4	7.86	600	
1354	7.16	1080	0.00	18.63		33.6	7,93	700	
1357	7.18	1070	0,000	18.63	32 29	32.8	7.97	1200	
1440	7.17	1070	(2.CD)	18.63	<del></del>		8.00	15777	
1403		1070	0.00	18.62	27	32,2	8.05	1800	
1406									Stable
1500									Collectionupl
					9				<u> </u>
							<b>)</b>		
					A	195			
					-				
4-6:1:6	. 00								
tability: [:	± 0.2 units	±5%	± 0.2 mg/L	±3%	± 20 mV	± 10 %			
2+	$\sim$	I /L							
ach Fe ²⁺ _	<u> </u>								
<b>!</b>									
ampies w	ere collecte	d directly fron	n pump unle	ess otherw	rise noted.				

g		~~~ <del>~</del> ~		_					
	L(	DW-FLO	<u>W PUR</u>	<u>GING /</u>	<u>and sa</u>	MPLIN	G DATA	A SHEE	
4		:DST S		1413	w	ell Number	•	MW	)5
Projec	t Number			0		Equipment			22
a =		:314101			·	Sample ID	: <u>000</u> c	1-122	Time:  311
Site Er	ngineer(s)	iles	, US_		_	Contractor	: <u>  Wn</u>	<u>o</u>	
Referenc	e: Top of (	Casing	Before	After	Tota	al Volume F	urged (mL)	: <u>[</u>	<u> </u>
Depth to	Water (ft)		7.83	)		96= (	2.476	(1) 44 s	70
Depth of			15.18	_		~ C	<u>ا</u> با بار	• • • • • • • • • • • • • • • • • • • •	. ()
Depth to Screen L	Top of Scr	een (ft)	50	<u>.                                    </u>		System V	olume (mL)	= (2.4*H)+	+470
Pump De			12-1	TUB	2 /ml /ft -	tubina valu	where	/4/01/1 5	
Pump Ra			100 mu	mia	ZTITE/IL	tubing volu H = lenati	nie per loot 1 of tubing ir	(1/8" I.D.) 1 feet	
	ump Rate		100 mi		470 mL =	Bladder vol	ume + Flow	thru cell vo	olume
System V	olume (ml	.)	496	_					
		Conductivity	Dissolved	Temp.	ORP	Turbidit.	D45-4-	Cum.	
Time	рH	(umhos)	Oxygen	(°C)	(mv)	Turbidity (NTU)	Depth to Water (ft)	Volume	Comments
1247		<u> </u>	(mg/L)					(mL)	
1250	7.21	2440	030	17.79	27	43.1	7.99	2.	permen
1253	7.24	2405	0.00	17.75	1 27 43.1 7.99 300				
1256	7.29	2480	0.00	17.75	15	0.0	8.00	900	
1259	7.32	2450	6,00	17.74	9	32.2	7.99	1260	
1302	7.32	2400	C.CO	17.74		28.9	7.99	1500	-
1305	1.32	2450	(J.CO)	17.74	6	32.1	8.00	1800	7.000
1305									Jablo
1311									iol lectrang
$\rightarrow$									
				0		_			······································
Stability: ±	0.2 units	±5%	± 0.2 mg/L	±3%	± 20 mV	± 10 %			
			_ <u> </u>	2070	7 20 III V	I 10 % ]	ł	-	
lach Fe ²⁺		1A							
<del></del>		<b>T</b>							
amples we	ere collecte	ed directly from	n pump unle	ess otherw	ise noted.				Constant to the second
			-						

	<u>LC</u>	)W-FLO	N PURC	<u> 3ING A</u>	<u>IND SA</u>	MPLIN	G DATA	N SHEE	<b>:</b> T
E	ect Name			4137	We	ell Numbe	r: <u> </u>	1W-	6
Projec		: <u>2913</u>		<u>)                                    </u>	_	Equipmen	t: Horil	$\infty$ $C$	1-22
		314100			-		): <u>0</u> 004-		Time:  027
Site Er	ngineer(s)	· LUB	<u>US</u>			Contracto	r: Dono	) .	
Referenc	e: Top of C	Casing	Before	After	Tota	al Volume I	ourged (mL)	: <u>[</u> 8	<u></u>
B '	Water (ft)		690			496=	(2.4XI	) <del>/</del> u7	$\circ$
Screen L Pump De Pump Ra Sample F	Top of Screength (ft)		14,2 4,3 10 11 100 my 1496	= - - [min		System \ tubing volument H = lengt	/olume (mL) where ume per foot h of tubing in	= (2.4*H)+ (1/8" I.D.) n feet	÷470
Time	рН	Conductivity (umhos)	Dissolved Oxygen (mg/L)	Temp.	ORP (mv)	Turbidity (NTU)	Depth to Water (ft)	Cum. Volume (mL)	Comments
1003									Deimon
1006	7.41	1520	0.40	1008	7	129	7.05	300	Clarky War
1023	7.41	1526	6.33	[िल्हे		13.2	7.14	600	U'
1012	1.44	1520	0.21	1668	116	142	720	900	
1012	1.45	1520	020	1661	115	14.6	7.25	1200	:
1018	7.40	1526	0.18	16.67	114	15.0	7.38	1 <u>2</u> 200	
1021	1.46	1520	0.16	16.6)		16.3	7,42	1800	
1024									Stable
1021									collections
	· · · · · · · · · · · · · · · · · · ·				$Q_{-}$				
		<u></u>				+			
					<u> </u>				
Stability:  -	± 0.2 units	±5%	± 0.2 mg/L	±3%	± 20 mV	+ 10.0/			
lach Fe²⁺_	Λ¥	ed directly from				± 10 %			
ampica W		onecay itoi	n puni <b>p</b> unie	ss otherw	rise noted.				

LOW ELONA DUDONO AND CALE										
LOW-FLOW PURGING AND SAMPLING DATA SHEET										
		: <u> UST 8</u>		w	_ Well Number:M W → 7					
Projec		2973	<u> </u>		Equipment: Horiba U-22					
		:-31141			Sample ID: 6004 - 124 Time: 1539					
Site Engineer(s): LUB 55.75						Contractor: None				
						· · · · · · · · · · · · · · · · · · ·				
Reference: Top of Casing Before After					Tot	Total Volume Purged (mL):				
Depth to Water (ft) 7.93 8					<u>.                                      </u>	(2.4)(12) + 470 = 499				
Depth of Well (ft)						·				
Depth to Top of Screen (ft)  Screen Length (ft)				<del></del>		System Volume (mL) = (2.4*H)+470				
Pump De			12	<del></del>	2 4ml /ft :	where				
Pump Rate 100 mumin						2.4mL/ft = tubing volume per foot (1/8" I.D.)  H = length of tubing in feet				
Sample Pump Rate 100 mUmin					470 mL =	470 mL = Bladder volume + Flowthru cell volume				
System Volume (mL)						To the same of the				
		Conductivity	Dissolved	Temp.	000			Cum.		
Time	рН	(umhos)	Oxygen	(°C)	ORP (mv)	Turbidity (NTU)	,	Volume	Comments	
15/5			(mg/L)	1 (0)	(""")	(1410)	Water (ft)	(mL)		
15/08	7.80	200	5,21	100		<del> </del>	- (10	<u> </u>	punon	
1511	7.81	2170		19.21	<u>  58                                   </u>	50.0	7.43		Mar hoods	
1514	7.81	2180	5.06	19.23		147.3	7.96	600		
1517	7.81	2180	4.88	9.24		149,1	7,98	900		
1520	7.81	5180	4.96	19.26		47.6	8,00	1260		
1523	7.82	2180	4.0A	19.28	SI	47.1	8,02	1200		
526	1.02	2100	9.54	9.30	50	47.8	8.04	1800		
1529									Stable	
1534									Statesing	
1231									Collectery	
			1						Dup	
				-	2					
				9						
tability:  +	0.2 units	±5%	± 0.2 mg/L	. 20/						
	O.L. GIII(O)		E 0.2 mg/L	±3%	± 20 mV	± 10 %	<u> </u>	<u> </u>		
ach Fe $^{2+}$ $N \mid \mathcal{A}$										
amples were collected directly from powers at a set										
amples were collected directly from pump unless otherwise noted.										



NON-HAZARDOUS WASTE MANIFEST

	Ple	aase print or type (Form designed for use on elite (12 pitch)	typewnier)			9 6 mm (***) 5		
ļ		NON-HAZARDOUS 1. Gar	nerator's US EF			Manifest		<u></u>
J		3. Generator's Name and Mailing Address A C	C A	2170023533	}	Document N	6018	2. Page :
X.	1.		amp	Rendleton				1 0
		In Sam Diago Ca asses 1080x 6	25560	S Carne Year V about				
14	124	A	ittn: Mar	Berenn 4705	~			· · · · · · · · · · · · · · · · · · ·
<u> </u>		A 2. Hamshorter i Combany Mame HOY!	<u>un</u>	Ce. CO CO US SPA ID Number		A. State Tran	Sporter's ID	
ļ		General Environmental Mgmt 7. Transporter 2 Company Name	inc.	CAD983649	88	O B. Transporte		326-10
			•	8. ' US EPA ID Number		C. State Tran		326-10
Í I		Designated Facility Name and Site Address		10. US EPA ID Number		D. Transporte	***************************************	
;		K-Pure 8910 Rochester Avenue		Living Hulfing		E. State Facili	ty's ID	
,		Rancho Cucamonga, CA 91730				F. Facility's Ph	JODA	
		11. WASTE DESCRIPTION				· · · · · · · · · · · · · · · · · · ·		<u>476-23(</u>
				· · · · · · · · · · · · · · · · · · ·	12. C	ontainers	13	
		2.			No.	Туре	Total Quantity	14. Unit Wt./V
		Non hazardous liquid (Well	Water)				E5T	
		b.			5	DM	200	-
	G E N						250	
	IN L							
	R	C.						Ì
	<del> </del>							
	R	d.			1			1
STE								
					- 1			
6	<b>N</b>	G. Additional Descriptions to: Materials Listed Above				H Handling Code		
3		11a) 5 x55g-Approval#				ur uerennå code	s for Wastes Listed Above	
ō		\$					•	
V-HAZARDOU		,				•		
2		WO# 162734						•
¥	"	5. Special Handling Instructions and Additional Information						
主		Emergency Phone: (800) 326-10	011 (G.	E.M.)				
ջ		Site: Assistant Chief of Staff	f-Bldg	22165-Assistant Chie	ef. (	amp Pend	Hotom en co	
~		UST Site 52710, 2	389,(	14131) 14137	ハマ:	スプル		- 4 brole
Ţ		GENERATORIO					39/593	791
	1	GENERATOR'S CERTIFICATION: I hereby certify that the conte in proper condition for perraport. The spaterials described on this is	ents of this ship manifest are no	ment are fully and accurately described and a	ure in all re	spects		
		LL SA		ASSIGNATION WAS IN LAURING	ons.			
		sted/Typed Name		Signature				alo
	<u> </u>	nargo Williams		I margo win	٠	_	Month L	Day Year
THANSPORTER	Print	Transporter Acknowledgement of Receipt of Materials				<u> </u>	4 12	006
Ñ	١	OSS TUASGEIRS		Signature	//		Da	
P	18. T	ransporter 2 Acknowledgement of Receipt of Materials		Jun 7 6	lar	9-8	Month D.	ay Year
Į.	Printe	ad/Typed Name		Signature	/		Dat	0100
Ā	<u> </u>	· · ·		Signature			Month Da	
F	19. Di	screpancy Indication Space						
A							-	
	20. Fac	clifty Owner or Operator Certification of						
17		cility Owner or Operator, Certification of receipt of the waste mater	rials covered by	this mandest, except as noted in item 19.		· · · · · · · · · · · · · · · · · · ·		
<del> </del>	Printed	Луреd Name		Cinnet	·	<b></b>	Date	
Y				Signature		··· ··· ··· ··· ··· ··· ··· ··· ··	Month Day	Year
۵.	<b>-</b>						, ,	1 -





Torrance, CA 90501
Tel: (310) 618-8889
Fax: (310) 618-0818

Date: 03-27-2006 EMAX Batch No.: 06C140

Attn: Nick Weinberger

SES-TECH

1940 E. Deere Avenue, Suite 200

Santa Ańa CA 92705

Subject: Laboratory Report

Project: Camp Pendleton, UST Site 14137

Enclosed is the Laboratory report for samples received on 03/15/06. The data reported include :

Sample ID	Control #	Col Date	Matrix	Analysis
0004 - 118 0004 - 119	C140-01 C140-02	03/14/06 03/14/06	WATER WATER	VOLATILE ORGANICS BY GC/MS VOLATILE ORGANICS BY GC/MS TPH DIESEL
0004-120	c140-03	03/14/06	WATER	SEMIVOLATILE ORGANICS SIM VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM
0004-121	, C140-04	03/14/06	WATER	VOLATILE ORGANICS BY GC/MS TPH DIESEL
0004-122	C140-05	03/14/06	WATER	SEMIVOLATILE ORGANICS SIM VOLATILE ORGANICS BY GC/MS TPH DIESEL
0004 - 123	C140-06	03/14/06	WATER	SEMIVOLATILE ORGANICS SIM VOLATILE ORGANICS BY GC/MS TPH DIESEL
0004-124	C140-07	03/14/06	WATER	SEMIVOLATILE ORGANICS SIM VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM



Sample ID	Control #	Col Date	Matrix	Analysis
0004~125	C140-08	03/14/06	WATER	VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM
0004 - 126	C140-09	03/14/06	WATER	VOLATILE ORGANICS BY GC/MS TPH DIESEL
0004-123MS	C140-06M	03/14/06	WATER	SEMIVOLATILE ORGANICS SIM VOLATILE ORGANICS BY GC/MS TPH DIESEL
0004-123MSD	C140-06S	03/14/06	WATER	SEMIVOLATILE ORGANICS SIM VOLATILE ORGANICS BY GC/MS TPH DIESEL SEMIVOLATILE ORGANICS SIM

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.  $% \left\{ 1\right\} =\left\{ 1\right$ 

Sincerely yours,

Kam Y. Pang, Ph.D. Laboratory Director

E MAX

TETRA TECH
1/10 Calabla Stret, Sule 500
5/40 Dere, CA 2101 (619) 234-8696

# CHAIN-OF-CUSTODY RECORD

2007 I. T		PURCHASE ORDER NO	ER NO.	7		#	ANA	LYSES	ANAL YSES REQUIRED	ard .	LABORATORY NAME	3	•	
2007 230 230 230		PROJECT NO.	13 . CO TO	15		<u>वि</u>	12K				ル と す 文 エ 文	Project Information Section Do not submit to	ormation ion ibmit to	
ENLABILANI TONIVATA		ARBILL NUMBER  JOUY IE Y  PROJECTOVILACT P	T C CT PHONE NUI	MBER		 1	(4公)	70			LABORATORY ID (FOR LABORATORY)	Laboratory	atory	
	スカーム OR FACT	77-128-158	20-	153	्रेट -	<u> </u>	7+	<u> </u>						
	DATE	TIME	NO. OF	LEVEL 3 4	<b>►&gt;</b> ■ □	<u> </u>	Hal	l limet l			COMMENTS	LOCATION	DEPTH START END	8
	日の	311-12/1000	W	X	(L)	Z Z	*	<u>が</u> 2020	ગુ			TRIPBANK		22
	3  4  co  1027	LZOI	5	X	70 C	X	×					MW6		SQ.
	HDG	3HDC 1119	S	×	3 তক্ত	$\frac{1}{2}$	X	4				MM		A.
	14106	1001/00/18	12	X	3 5%	× ×	×					MWZ		9
- ==	3114106 B11	1311	0	¥	<u>88</u>	<u>×</u>	×					MWG	/	73
- ==	<u>क्</u> रा	314100 1406	$\overline{\mathcal{D}}$	X	Jour Jan	<u>7</u> ×	XX				MS /MSD	MW3		9
_=	3111/20	1529	12	×	() () ()	Now X	XX	_				M W 7	/	3
	3/4/02	232	120	X	رياريز المقاريز	XX	$\times   \times  $					MW7		ر ح
===	12 OS	999	D	V.	3 58	X	メメ					Town AME		D
1	1	2	-			-								
<u>چېرې</u>	350	3	Signature)	5	LABOR	TORY II	NSTRUC	TIONS/C(	LABORATORY INSTRUCTIONS/COMMENTS			SAMPLING COMMENT:		
≝,′		√ A  √ A  √ A  √ A  √ A  √ A  √ A  √ A	至		<del>,</del>									
7		RECEIVED BY (Signaure)	gnature) /		COMPO	SITE DES	COMPOSITE DESCRIPTION	z				<u></u>		
l≆ !		COMPANY												*****
-		RECEIVED BY (Signature)	gnature)		SAMPLE COND TEMPERATURE	E CONDI ATURE	U NOLL	PON REC	SAMPLE CONDITION UPON RECEIFT (FOR LABORATORY) TEMPERATURE SAMPLE CONDITION: 7 I INT	R LABOR	ECEIPT (FOR LABORATORY)			· .
Σ	TIME	COMPANY			COOLERISEAL	SEAL	10	NTACT	O INTACT D BROKEN	<b>a</b>		N. C. IVO		
												The state of the s		

White - Laboratory; Pink - Laboratory; Canary - Project File; Manila - Data Management

. 





# **TABLE OF CONTENTS**



**CLIENT:** 

**SES-TECH** 

PROJECT:

**CAMP PENDLETON, UST SITE 14137** 

SDG:

06C140

SECTION		PAGE
Cover Letter, CO	DC/Sample Receipt Form	1000 – 1004
GC/MS-VOA	METHOD 5030B/8260B	2000 – 2130
GC/MS-SVOA	METHOD 3520C/8270C SIM	3000 - 3082
GC-VOA	**	4000
GC-SVOA	METHOD 3520C/8015B	5000 - 5058
HPLC	**	6000 –
METALS	**	7000 –
WET	**	8000 -
OTHERS	**	9000 –

^{** -} Not Requested



· . .

TETRA TECH

Sea Diego, Co. 92101 (613) 224-8696 DV LO (-43

NUMBER 20345

II ABORATORY NAME		<u> </u>	LABORATORY ID (FOR LABORATORY)	060140	COMMENTS			,			ME/MSD				. S.I.				FOR LABORATORY)
7	ANALYSES REQUIRED	95 951	78 08 277	8 b s	H HZ +HZL \$701 1 + < +	By X X aluch	De XXX	o XXX	$\times \times \times \times$	XXX	Oby X X X	Olici XXX	Sout XX	10, 7××	LABORATORY INSTRUCTIONS/COMMENTS		COMPOSITE DESCRIPTION		SAMPLE CONDITION UPON RECEIPT (FOR LABORATORY)
T S S S S S S S S S S S S S S S S S S S	PURCHASE ORDER NO	PROJECTIVO PLD3, SCHO	AIRBILL NUMBER	PROJECT CONTACT PHONE NUMBER	TIME NO OF - LEVEL Y COLLECTED CONTAINER 3 4 E	1000 3 X W	MX 5 1201	IIIA S X	1100 5 X	3 7 0 118	1406 (5 XV	1929 15 KI W	1934 BX K	1575 15 X 60	RECTIVED BY Signature	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	RECEIVED BY (Signalurch)	COMPANY >> <	RECEIVED BY (Signature) S.A.
PROJECT NAME	) Reduton	R 14137	SAMPLER NAME  The sample of th		SAMPLE ID DATE COLLECTED	004-118 BILHICA/	(204-119 Bliulas)	004-120 3HBG	901h18 121-h000	122 Blulo			125 5/4/04	3004-126 4406	RELINGUISHED BY (Signature)	COMPANY CO.	SHED WY Signafure DATE OF	7 TIME 530	) DATE

0

White - Lahoratory Pink - Lahoratory Canary - Proiect File: Manila - Data Management

# SAMPLE RECEIPT FORM 1

EMAX Courier	e of Delivery	Delivered By/Airbill	ECN	060140
		SEELOL	Recepient	
Client Delivery				J. Luna
☐ Third Party			Date	
			Time	1270
		COC Inspection		
Client Name		Sampler Name	Sampling	Date/Time/Location
Address		Courier Signature/Date/Time		
Client PM/FC		□-TAT	Analysis R	equired
Tel #/Fax #		Sample ID	Matrix	
Safety Issues	None	High Concentrations expected	Preservati	
Comments:	Rad Screening Requi	red	Superfund	Site Samples
			,	
			2	
Container	Cooler	Packaging Inspection		
Condition	Custody Seal	L Box		
⊃ackaging	П = 141 = 1	Intact	Damaged [	$\supset$ ,
Temperatures	Cooler 1 2 2 C	Styrofoam	Sufficient [	=plasteBeg=
emperatures	Cooler 1 4 2	Cooler 2 2.6° C	Cooler 3	Cooler 4
	Cooler 5	a		Cooler 8
Comments:	Cooler 9		Cooler 11	
JOHN NOTICE.				
	<del></del>			:
LSCID	Client ID			
	Official ID	Discrepancy		Prrective Action
CID : Lab Sample	2 Container ID			
	⇒ Container ID		1	
VIEWS _	⇒ Container ID		1	9.11
CID : Lab Sample VIEWS	Sleep	SRF CGI	Les PM	Ald
VIEWS	e Container ID		PM_Date	S116/06

### **REPORTING CONVENTIONS**

### **DATA QUALIFIERS:**

Lab Qualifier	AFCEE Qualifier	Description
<b>J</b> .	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
N		Indicates presumptive evidence of a compound.
В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

### **ACRONYMS AND ABBREVIATIONS:**

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out ·

### **DATES**

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

		~
		·
and the second second		
		·



# LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14137

METHOD 5030B/8260B VOLATILE ORGANICS BY GC/MS

SDG#: 06C140

• 



### **CASE NARRATIVE**

CLIENT:

SES-TECH

PROJECT:

**CAMP PENDLETON, UST SITE 14137** 

SDG:

06C140

### METHOD 5030B/8260B VOLATILE ORGANICS BY GC/MS

Nine (9) water samples were received on 03/15/06 for Volatile Organic analysis by Method 5030B/8260B in accordance with USEPA SW846, 3rd ed.

### 1. Holding Time

Analytical holding time was met.

### 2. Tuning and Calibration

Tuning and calibration were carried out at 12-hour interval. All QC requirements were met.

### 3. Method Blank

Method blanks were free of contamination at half of the reporting limit.

### 4. Surrogate Recovery

Recoveries were within QC limit.

### 5. Lab Control Sample/Lab Control Sample Duplicate

Recoveries were within QC limit.

## 6. Matrix Spike/Matrix Spike Duplicate

Sample C140-06 was spiked. All recoveries were within QC limit.

### 7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met.

LAB CHRONICLE VOLATILE ORGANICS BY GC/MS

		. China - Labertalon, Cal Gille 1410.	<i>.</i>	1			* * * * * * * * * * * * * * * * * * *	 	Instrument 10	int 10 : T-067
	٠		   	‡ ! !	WATER	ER				
Client		Laboratory	Dilution	ж	Analysis	Extraction	Sample	Calibration Prep.	in Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 1	* ;			, 1 , 1 , (	; ; ; () ; ()	00027011	
MBLK IN		V06/12/00	_	X X	05/16/0615:48	05/16/0615:48	RCC325	KCCIAZ	VUOYLEU	Method Blank
LCS1W		V067C20L	<del></del>	A	03/16/0612:51	03/16/0612:51	RCC321	RCC192		Lab Control Sample (LCS)
LC014		V067C20C	·	AN	03/16/0614:02	03/16/0614:02	RCC323	RCC192	V067C20	LCS Duplicate
0004-118		C140-01		NA	03/16/0620:32	03/16/0620:32	RCC333	RCC192	V067C20	Field Sample
0004-123		C140-06	-	ΝĄΝ	03/16/0621:07	03/16/0621:07	RCC334	RCC192	V067C20	Field Sample
C004-123MS		C140-06M	-	Ä	03/16/0622:54	03/16/0622:54	RCC337	RCC192	v067C20	Matrix Spike Sample (MS
0004-123MSD		C140-06S	_	ď Z	03/16/0623:30	03/16/0623:30	RCC338	RCC192	V067c20	MS Duplicate (MSD)
MBLK24		V067C27Q		ď	03/21/0602:06	03/21/0602:06	RCC409	RCC192	V067C27	Method Blank
LCS2W		V067C27L	_	NA NA	03/21/0600:20	03/21/0600:20	RCC406	RCC192	V067C27	Lab Control Sample (LCS)
LCD2W		V067C27C	4	NA	03/21/0600:56	03/21/0600:56	RCC407	RCC192	V067C27	LCS Duplicate
0004-119		C140-02	ţ-w	N.	03/21/0603:53	03/21/0603:53	RCC412	RCC192	V067C27	Field Sample
0004-120		C140-03	-	K.	03/21/0604:28	03/21/0604:28	RCC413	RCC192	V067C27	Field Sample
0004-121		C140-04	-	X A	03/21/0605:04	03/21/0605:04	RCC414	RCC192	V067C27	Field Sample
0004-122		C140-05	-	ΝΑ	03/21/0605:39	03/21/0605:39	RCC415	RCC192	V067C27	Field Sample
0004-124		C140-07	-	AN.	03/21/0606:15	03/21/0606:15	RCC416	RCC192	V067C27	Field Sample
0004-125		C140-08	-	AN	03/21/0606:50	03/21/0606:50	RCC417	RCC192	V067C27	Field Sample
0006-126		00000	•							

FN · Filename % Moist · Percent Moisture

# SAMPLE RESULTS

		,	
·	· · · · · · · · · · · · · · · · · · ·		
			• • • • • • • • • • • • • • • • • • •
			, ,

Client : SES-TECH Date Collected: 03/14/06

Lab Samp ID: C140-01 Dilution Factor: 1
Lab File ID: RCC333 Matrix : WATER
Ext Btch ID: V067C20 % Moisture : NA
Calib. Ref.: RCC192 Instrument ID : T-067

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
1 1 1 TRICH COCTUANT			
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2 .2
1,1-DICHLOROETHANE	ND	5 e	.2
1,1-DICHLOROETHENE	ND	5 .5	
1,2-DICHLOROETHANE	ND	.5 5	.2 .2
1,2-DICHLOROPROPANE	ND	50	.2
METHYL ETHYL KETONE	ND	50	. a 5
2-HEXANONE	ND	50 50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50 50	5
ACETONE	ND	.5	.2
BENZENE BROMOD LOUI OROME THANK	ND	.5	-2
BROMOD I CHLOROMETHANE	ND	5	.3
BROMOFORM BROMOMETHANE	ND ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	, ND	5	.2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	. 5	.2
CIS-1,2-DICHLOROETHENE	ND .	5	.2
CIS-1,3-DICHLOROPROPENE	ND .	.5	.2
DIBROMOCHLOROMETHANE	ND	5	.2
3. BENZENE	ND	.5	.2
NES	ND	.5	.2
MIBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
**************************************	ND	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.š	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.ž
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

99	65 - 135
104	75 - 125
115	75 <b>-</b> 125
	99 104

R.L.: Reporting limit

· : Out of QC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL
D : Value from dilution analysis

D.O. : Diluted out

Client : SES-TECH
Project : CAMP PENDLETON, UST SITE 14137 Date Collected: 03/14/06 Date Received: 03/15/06

Date Extracted: 03/21/06 03:53 Batch No. : 06C140 Sample ID: 0004-119 Lab Samp ID: C140-02 Date Analyzed: 03/21/06 03:53 Dilution Factor: 1

Matrix : WATER % Moisture : NA Instrument ID : T-067 Lab File ID: RCC412 · Matrix Ext Btch ID: VO67C27

Calib. Ref.: RCC192 

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1_	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLORQPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMOD I CHLOROME THANE	ND	5	.2
BROMOFORM	ON	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	5 - 5	.2
CHLOROMETHANE	ND		.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
DIBROMOCHLOROMETHANE	ON	5	.2
ETHYLBENZENE	МD	.5	.2
XYLENES	ND	5	.2
MTBE	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
<b>TETRACHLOROETHYLENE</b>	ND	5	.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ИD	5	.2
ETHYL TERT-BUTYL ETHER	ИD	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

78 KECOVEKI	GC LIMIT	
98	65 - 135	
102	75 - 125	
109	75 - 125	
	102	

R.L.: Reporting limit

: Out of QC

: Exceeded calibration range : Found in associated method blank : Value between R.L. and MDL : Value from dilution analysis

D.O. : Diluted out

Date Collected: 03/14/06 : SES-TECH Project : CAMP PENDLETON, UST SITE 14137
B. No. : 06C140 Date Received: 03/15/06 Date Extracted: 03/21/06 04:28 Date Analyzed: 03/21/06 04:28 D: 0004-120 Dilution Factor: 1 La Samp ID: C140-03 : WATER : NA Lab File ID: RCC413 Matrix Ext Btch ID: V067C27 % Moisture Instrument ID : T-067 Calib. Ref.: RCC192 

·	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND .	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	NĐ	5	-2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5 5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMOD I CHLOROMETHANE	ND	5 5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	· ND	5 5	.2
CHLOROETHANE	ND		.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	. 5	.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
DIBROMOCHLOROMETHANE	ND	5	.2
FFOM, BENZENE	ND	.5	.2
ES	DM	5	.2
- No. 222	ND	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5 5	.2
TETRACHLOROETHYLENE	ND		.2
TOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	-2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
·			
1,2-DICHLOROETHANE-D4	100	65-135	
TOLUENE-D8	101	75 - 125	
BROMOFLUOROBENZENE	108	75 - 125	

R.L.: Reporting limit

: Out of QC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL
D : Value from dilution analysis
D.O.: Diluted out

: SES-TECH Date Collected: 03/14/06 Project : CAMP PENDLETON, UST SITE 14137 Batch No. : 06C140 Date Received: 03/15/06
Date Extracted: 03/21/06 05:04 Sample 1D: 0004-121 Date Analyzed: 03/21/06 05:04 Dilution Factor: 1 Lab Samp ID: C140-04 Lab File ID: RCC414 Ext Btch ID: V067C27 : WATER Matrix : NA % Moisture Instrument ID : 1-067 Calib. Ref.: RCC192 ________

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	-2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5 5
BENZENE	ND	.5	.2
BROMOD I CHLOROMETHANE	ND	5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLORGETHANE	DM	5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	. 5	.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
DIBROMOCHLOROMETHANE	ND	5	.2
ETHYLBENZENE	ND	.5	.2
XYLENES	ND	5	.2
MTBE	9.5	1	.2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ND	5	.2
FOLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2 .2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5 5	.2
TERT-AMYL METHYL ETHER	ND	5	.2

% RECOVERY	QC LIMIT
99	65 - 135
98	75 - 125
99	75 - 125
	98

R.L.: Reporting limit

: Out of OC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL
D : Value from dilution analysis
D.O. : Diluted out

Date Collected: 03/14/06

: SES-TECH Project : CAMP PENDLETON, UST SITE 14137 Date Received: 03/15/06 Batch No. : 06C140 e ID: 0004-122 Date Extracted: 03/21/06 05:39 Date Analyzed: 03/21/06 05:39 L. __Jamp ID: C140-05 Dilution Factor: 1 Lab File ID: RCC415 : WATER Matrix Ext Btch ID: V067C27 % Moisture Calib. Ref.: RCC192 Instrument ID : T-067 RESULTS MDL RL **PARAMETERS** (ug/L) (ug/L) (ug/L)5 .2 1,1,1-TRICHLOROETHANE ND 1,1,2,2-TETRACHLOROETHANE ND .2 1,1,2-TRICHLOROETHANE .2 ND 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 5 ND .2 . 5 1,2-DICHLOROETHANE ND 1,2-DICHLOROPROPANE ND .2 50 METHYL ETHYL KETONE ND 5 2-HEXANONE ND 50 50 4-METHYL-2-PENTANONE (MIBK) ND 50 ACETONE ND .5 5 BENZENE .2 BROMODICHLOROMETHANE ND .3 5 5 5 5 5 **BROMOFORM** ND **BROMOMETHANE** ND . 2 CARBON TETRACHLORIDE ND CHLOROBENZENE · ND .2 CHLOROETHANE ND 5 CHLOROFORM ND 5 5 CHLOROMETHANE ND CIS-1,2-DICHLOROETHENE ND CIS-1,3-DICHLOROPROPENE ND 5 DIBROMOCHLOROMETHANE ND .5 FTHYLBENZENE ND )ES ND 5 MD 5 METHYLENE CHLORIDE 5 STYRENE ND TETRACHLOROETHYLENE ND . 5 5 CLUENE ND TRANS-1,2-DICHLOROETHENE ND .5 5 TRANS-1,3-DICHLOROPROPENE ND TRICHLOROETHENE .2 ND 50 VINYL ACETATE ND VINYL CHLORIDE ND .5 20 ND TERT-BUTYL ALCOHOL DIISOPROPYL ETHER ND 5 ETHYL TERT-BUTYL ETHER ND 5 .2 TERT-AMYL METHYL ETHER ND .2

SUKKUGATE PAKAMETEKS	% KECUVEKI	AC LILLI
1,2-DICHLOROETHANE-D4	93	65-135
TOLUENE-D8	93	75 - 125
BROMOFLUOROBENZENE	98	75 - 125
TOLUENE-D8	93	75-17

R.L.: Reporting limit

Out of QC

Client

Ε Exceeded calibration range Found in associated method blank В : Value between R.L. and MDL : Value from dilution analysis D D.O.: Diluted out

Date Collected: 03/14/06 Date Received: 03/15/06 Client : SES-TECH Project : CAMP PENDLETON, UST SITE 14137 Batch No. : 06C140 Date Extracted: 03/16/06 21:07 Date Analyzed: 03/16/06 21:07 Sample ID: 0004-123 Lab Samp ID: C140-06 Dilution Factor: 1 : WATER Matrix Lab File ID: RCC334

% Moisture : NA Instrument ID : T-067 Calib. Ref.: RCC192 

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2 .2 .2 .2
1,2-DICHLOROETHANE	ND	.5	.2
1.2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	. 2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ПD	.5	.2
BROMODICHLOROMETHANE	ND	5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	- ND	5	.2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	5 , 5 5	.2
CHLOROMETHANE	ND	, 5	.2
CIS-1,2-DICHLOROETHENE	МD	5	.2
CIS-1,3-DICHLOROPROPENE	ND	-5	.2
DIBROMOCHLOROMETHANE	ND	5	.2
ETHYLBENZENE	ND	-5	.2
XYLENES	ND	5	.2
MTBE	ND	1	.5
METHYLENE CHLORIDE	ND	5 5 .	
STYRENE	CN	э. 5	,2 ,2
TETRACHLOROETHYLENE	ND	.5	.2
TOLUENE	ND	. 5 5	.2
TRANS-1,2-DICHLOROETHENE	ND	.5	.2
TRANS-1,3-DICHLOROPROPENE	ND	., 5	.2
TRICHLOROETHENE	ND	50	.5
VINYL ACETATE	ND ND	.5	.2
VINYL CHLORIDE	ND ND	20	5
TERT-BUTYL ALCOHOL	ND ND	5 5	,2
DIISOPROPYL ETHER	ND ND	5	.2
ETHYL TERT-BUTYL ETHER TERT-AMYL METHYL ETHER	ND	5	.2
ICKI-AMIL MEINIL CINCK	NU	,	• • •

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1.2-D1CHLOROETHANE-D4	100	65 - 135
TOLUENE-D8	104	75 - 125
BROMOFLUOROBENZENE	116	75 - 125

R.L.: Reporting limit

: Out of QC

Ext Btch ID: VO67C20

 Exceeded calibration range Found in associated method blank : Value between R.L. and MDL D : Value from dilution analysis 0.0. : Diluted out

Date Collected: 03/14/06 : SES-TECH : CAMP PENDLETON, UST SITE 14137 Client Date Received: 03/15/06 Project No. : 06C140 e ID: 0004-124 Date Extracted: 03/21/06 06:15 Date Analyzed: 03/21/06 06:15 Dilution Factor: 1 Lap Samp ID: C140-07 Matrix : WATER % Moisture : NA Lab File ID: RCC416 Ext Btch ID: V067C27 Instrument ID : T-067 Calib. Ref.: RCC192 

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
1,1,1-TRICHLOROETHANE	ND	5	.2 .2
1,1,2,2-TETRACHLOROETHANE	ND	1	
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	٠.٤
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5 5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE	.3J ·	5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	.5 .5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	ND	5	.2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	. 5	.2
CIS-1,2-DICHLOROETHENE	ND	.5 .5	.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
DIBROMOCHLOROMETHANE	.32J	5	.2
LBENZENE	ND	,5	.2
NES	ND	5	.2
MidÉ	.41J	1	.2
METHYLENE CHLORIDE	ON	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ON	5	.2
TOLUENE	NO	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
	******	
1,2-DICHLOROETHANE-D4	97	65 - 135
TOLUENE-D8	98	75 - 125
BROMOFLUOROBENZENE	106	75 - 125

R.L.: Reporting limit

: Out of QC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL
D : Value from dilution analysis
D.O. : Diluted out

Date Collected: 03/14/06 Date Received: 03/15/06 Client : SES-TECH Project : CAMP PENDLETON, UST SITE 14137
Batch No. : 06C140
Sample ID: 0004-125 Date Extracted: 03/21/06 06:50 Date Analyzed: 03/21/06 06:50 Lab Samp ID: C140-08 Lab File ID: RCC417 Dilution Factor: 1 Matrix : WATER

% Moisture : NA Instrument ID : T-067 Calib. Ref.: RCC192 

PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	ND ND	5 1	.2
1,1,2-TRICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL' KETONE	ND	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE ,	.31J	5 5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	.5	.2
CARBON TETRACHLORIDE	ND	.5	-2
CHLOROBENZENE	· ND	5	.2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	. 5 . 5	.2 .2
CHLOROMETHANE	ND	. 5	.2
CIS-1,2-DICHLOROETHENE	ND	.5	.2
CIS-1,3-DICHLOROPROPENE	ND .33J	5	.2
DIBROMOCHLOROMETHANE	. 330 DN	.5	.2
ETHYLBENZENE	ND ND	.5	.2
XYLENES	.441	1	.2
MTBE METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ND	5	.2
OLUENE	ND	.5	.2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1.3-DICHLOROPROPENE	ND	,5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5	.2
ETHYL TERT-BUTYL ETHER	ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1,2-DICHLOROETHANE-D4	103	65 - 135
TOLUENE-D8	103	75 - 125
BROMOFLUOROBENZENE	110	75 - 125

R.L.: Reporting limit

: Out of QC

Ext Btch ID: V067C27

: Exceeded calibration range : Found in associated method blank : Value between R.L. and MDL D : Value from dilution analysis

D.O. : Diluted out

Client : SES-TECH Date Collected: 03/14/06 Project : CAMP PENDLETON, UST SITE 14137 Date Received: 03/15/06 Date Extracted: 03/21/06 07:25 No. : 06C140 e ID: 0004-126 Analyzed: 03/21/06 07:25 Date Lau Samp ID: C140-09 Dilution Factor: 1 : WATER Lab File ID: RCC418 Matrix Ext Btch ID: V067C27 % Moisture : NA Instrument ID : T-067 Calib. Ref.: RCC192 MDT. RESULTS RL (ug/L) PARAMETERS (ug/L) (ug/L)1,1,1-TRICHLOROETHANE NĐ 5 1,1,2,2-YETRACHLOROETHANE ND .2 5 1,1,2-TRICHLOROETHANE ND 1,1-DICHLOROETHANE 5 ND 5 1,1-DICHLOROETHENE ND 1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE 5 ND 50 METHYL ETHYL KETONE ND 2-HEXANONE ND 5 4-METHYL-2-PENTANONE (MIBK) 50 ND 50 ACETONE 5.1J .5 BENZENE ND 5 BROMODICHLOROMETHANE .22J 5 BROMOFORM ND .2 5 BROMOMETHANE ND . 5 CARBON TETRACHLORIDE ND 5 CHLOROBENZENE ND 5 CHLOROETHANE ND 5 CHLOROFORM .31J 5 CHLOROMETHANE ND 5 CIS-1,2-DICHLOROETHENE ND 5 CIS-1,3-DICHLOROPROPENE ND DIBROMOCHLOROMETHANE ND BENZENE ND 5 NES NO 1 ND METHYLENE CHLORIDE ND 5 5 5 STYRENE ND TETRACHLOROETHYLENE .5 5 TOLUENE ND TRANS-1,2-DICHLOROETHENE ND .5 TRANS-1,3-DICHLOROPROPENE ND 5 NΠ TRICHLOROETHENE VINYL ACETATE ND 50 .5 VINYL CHLORIDE ND TERT-BUTYL ALCOHOL ND 20 5 DIISOPROPYL ETHER ND 5 ETHYL TERT-BUTYL ETHER ND TERT-AMYL METHYL ETHER ΝĐ SURROGATE PARAMETERS % RECOVERY QC LIMIT 97 65-135. 1,2-DICHLOROETHANE-D4 TOLUENE-D8 100 75-125 75-125 BROMOFLUOROBENZENE 107

R.L. :	Reporting	limit
--------	-----------	-------

^{* :} Out of QC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL
D : Value from dilution analysis
D.O. : Diluted out



# QC SUMMARIES

			•
·	·		
•			
· · ·			
			-

: SES-TECH : CAMP PENDLETON, UST SITE 14137 Date Collected: NA Project Date Received: 03/16/06 Potch No. : 06C140 le ID: MBLK1W Date Extracted: 03/16/06 15:48 Date Analyzed: 03/16/06 15:48 /samp 1D: V067C200 Dilution Factor: 1 Lab File ID: RCC325 : WATER : NA Matrix Ext 8tch ID: V067C20 % Moisture Instrument ID : T-067 Calib. Ref.: RCC192 

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/l)
A A A			*****
1,1,1-TRICHLOROETHANE	NÐ	5	.2
1,1,2,2-TETRACHLOROETHANE	ND	1	.2
1,1,2-TRICHLOROETHANE	П	5	.2
1,1-DICHLOROETHANE	ND	5	.2
1,1-DICHLOROETHENE	ND	5	.2
1,2-DICHLOROETHANE	ND	.5	.2
1,2-DICHLOROPROPANE	ND	5	.2
METHYL ETHYL KETONE	ND	50	.2
2-HEXANONE	ND	50	5
4-METHYL-2-PENTANONE (MIBK)	ND	50	5 5
ACETONE	ND	50	5
BENZENE	ND	.5	.2
BROMODICHLOROMETHANE	ND	5	.2
BROMOFORM	ND	5	.3
BROMOMETHANE	ND	5	.2
CARBON TETRACHLORIDE	ND	.5	.2
CHLOROBENZENE	' ND	5	.2
CHLOROETHANE	ND	5	.2
CHLOROFORM	ND	5	.2
CHLOROMETHANE	ND	5 5 5 .5	.2
CIS-1,2-DICHLOROETHENE	ND	5	.2
CIS-1,3-DICHLOROPROPENE	ND	.5	.2
DIBROMOCHLOROMETHANE	ND	5	.2
ELHYLBENZENE	ND	.5	.2
NES	ND	5	.2
	ND	1	,2
METHYLENE CHLORIDE	ND	5	.5
STYRENE	ND	5	.2
TETRACHLOROETHYLENE	ND	5	.2
FOLUENE	ND	.5	,2
TRANS-1,2-DICHLOROETHENE	ND	5	.2
TRANS-1,3-DICHLOROPROPENE	ND	.5	.2
TRICHLOROETHENE	ND	5	.2
VINYL ACETATE	ND	50	.5
VINYL CHLORIDE	ND	.5	.2
TERT-BUTYL ALCOHOL	ND	20	5
DIISOPROPYL ETHER	ND	5 5	.2
ETHYL TERT-BUTYL ETHER	ND ND	5	.2
TERT-AMYL METHYL ETHER	ND	5	.2 .2
TENT MINE PETHIC CHEK	ND	,	, c

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
*******		
1,2-DICHLOROETHANE-D4	96	65 - 135
TOLUENE-D8	101	75 - 125
BROMOFLUOROBENZENE	114	75 - 125

R.L.: Reporting limit

* : Out of QC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL
D : Value from dilution analysis
D.O. : Diluted out

### EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT: BATCH NO.: SES-TECH

CAMP PENDLETON, UST SITE 14137 PROJECT:

06C140

SW 50308/82608 METHOD:

MATRIX: DILUTION FACTOR: 1

WATER

MBLK1W

LAB SAMP ID: V067C20Q LAB FILE ID:

RCC325

V067C20L RCC321

DATE EXTRACTED: 03/16/0615:48 03/16/0612:51 03/16/0614:02

03/16/0615:48 03/16/0612:51 03/16/0614:02 V067C20 V067C20

V067C20

V067C20C

RCC323

DATE COLLECTED: NA DATE RECEIVED: 03/16/06

% MOISTURE:

PREP. BATCH: CALIB. REF:

DATE ANALYZED:

SAMPLE ID:

RCC192

RCC192

RCC192

NA

ACCESSION:

PARAMETER	BLNK RSLT (ug/L)	SPIKE AMT (ug/L)	BS RSLT (ug/L)	. BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	RPO (%)	QC LIMIT	MAX RPD (%)
1,1-Dichloroethene	ND	10	10.8	108	10	9.21	92	16	75-125	20
Benzene	ND	10	10.3	103	10	9.91	99	4	75-125	20
Chlorobenzene Toluene	DN DN	10 10	10.8	108 107	10 10	10.1 10.2	101 102	4	75-125 75-125	20 20
Trichloroethene	ND	10	10.5	105	10	9.88	99	6	75-125	20

SURROGATE PARAMETER	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	QC LIMIT
1,2-Dichloroethane-d4	10	10.4	104	. 10	9.14	91	65 - 135
Toluene-d8	10	9.65	96	10	9.03	90	75 - 125
Bromofluorobenzene	10	9.04	90	10	8.95	89	75 - 125

Client : SES-TECH Date Collected: NA : CAMP PENDLETON, UST SITE 14137 Received: 03/21/06 Project Date Date Extracted: 03/21/06 02:06 No. : 06C140 e ID: MBLK2W Date Analyzed: 03/21/06 02:06 Lab Samp ID: V067C270 Dilution Factor: 1 Lab File ID: RCC409 Matrix : WATER Ext 8tch ID: V067C27 % Moisture : NA Instrument ID : T-067 Calib. Ref.: RCC192 MDT RESULTS RL PARAMETERS (ug/L) (ug/L) (ug/L) 5 .2 1,1,1-TRICHLOROETHANE NĐ 1,1,2,2-TETRACHLOROETHANE .2 ND 5 .2 1,1,2-TRICHLOROETHANE ND 1,1-DICHLOROETHANE 5 1,1-DICHLOROETHENE .2 ND .5 1,2-DICHLOROETHANE ND 1,2-DICHLOROPROPANE ND .2 50 METHYL ETHYL KETONE ND 2-HEXANONE 50 5 ND 5 4-METHYL-2-PENTANONE (MIBK) ΝĐ 50 50 **ACETONE** ND .5 BENZENE ND .2 BROMODICHLOROMETHANE ND 5 BROMOFORM 5 .2 BROMOMETHANE ND . 5 CARBON TETRACHLORIDE ND CHLOROBENZENE ND 5 .2 CHLOROETHANE ND 5 CHLOROFORM ND .2 5 CHLOROMETHANE ND 5 CIS-1, 2-DICHLOROETHENE ND .2 CIS-1,3-DICHLOROPROPENE ND .2 5 DIBROMOCHLOROMETHANE NΩ BENZENE 5 .2 ES ND MIRE ND METHYLENE CHLORIDE 5 .2 STYRENE ND **TETRACHLOROETHYLENE** ND ND TOLUENE 5 TRANS-1,2-DICHLOROETHENE ND TRANS-1,3-DICHLOROPROPENE ND .2 5 TRICHLOROETHENE ND VINYL ACETATE ND 50 .5 .2 ND VINYL CHLORIDE 5 TERT-BUTYL ALCOHOL ND 50 DIISOPROPYL ETHER ND .2 5 ETHYL TERT-BUTYL ETHER ND TERT-AMYL METHYL ETHER ND .2

SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
1,2-DICHLOROETHANE-D4	106	65 - 135
TOLUENE-D8	100	75 - 125
BROMOFLUOROBENZENE	108	75 - 125

R.L.: Reporting limit

: Out of QC

E : Exceeded calibration range
B : Found in associated method blank
J : Value between R.L. and MDL

D : Value from dilution analysis

D.O. : Diluted out



### EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

SES-TECH

PROJECT:

BATCH NO.:

SAMPLE ID:

LAB SAMP ID:

LAB FILE ID:

PREP. BATCH:

DATE ANALYZED:

CAMP PENDLETON, UST SITE 14137

METHOD:

06C140

SW 5030B/8260B

MATRIX: DILUTION FACTOR: 1

WATER

1

MBLK2W V067C27Q

RCC409

V067C27L RCC406

V067C27C RCC407

DATE EXTRACTED: 03/21/0602:06 03/21/0600:20 03/21/0600:56 03/21/0602:06 03/21/0600:20 03/21/0600:56

1

DATE COLLECTED: NA DATE RECEIVED: 03/21/06

NΑ

% MOISTURE:

V067C27 V067C27 V067C27 RCC192 RCC192 RCC192

CALIB. REF: ACCESSION:

PARAMETER	BLNK RSLT (ug/L)	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	RPD (%)	QC LIMIT	MAX RPD
1,1-Dichtoroethene	ND	10	9.56	96	10	9.09	91	5	75-125	20
Benzene	ND	10	10	100	10	9.58	96	4	75 - 125	20
Chlorobenzene	DN	10	10.1	101	10	9.63	96	4	75 - 125	20
Toluene	ND	10	9.96	100	10	9.65	97	3	75 - 125	20
Trichloroethene	ИD	10	9.58	96	10	9.2	92	4	75 - 125	20

SURROGATE PARAMETER	SPIKE AMT (ug/L)	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	QC LIMIT
1,2-Dichloroethane-d4	10	9.59	96 ·	10	9.63	96	65 - 135
Toluene-d8	10	9.45	. 95	10	9.12	91	75 - 125
Bromofluorobenzene	10	9.58	96	10	8.94	89	75 - 125

### EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT:

SES-TECH

PROJECT: CAMP PENDLETON, UST SITE 14137

BATCH NO.:

06C140

ୁ D : SW 5030B/8260B

MATRIX: DILUTION FACTOR: 1

WATER

SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED:

DATE ANALYZED:

0004-123 C140-06

RCC334

C140-06M C140-06S RCC337 RCC338

03/16/0622:54 03/16/0621:07 03/16/0621:07 03/16/0622:54

03/16/0623:30

03/16/0623:30

DATE COLLECTED: 03/14/06 DATE RECEIVED:

% MOISTURE:

03/15/06

NA

PREP. BATCH: CALIB. REF:

V067C20 RCC192

V067C20 RCC192

V067020 RCC192

ACCESSION:

PARAMETER	SMPL RSLT (ug/L)	SPIKE AMT (ug/L)	MS RSLT (ug/L)	MS % REC	SPIKE AMT (ug/L)	MSD RSLT (ug/L)	MSD % REC	RPD (%)	QC LIMIT	MAX RPD
1,1-Dichloroethene Benzene Chlorobenzene Toluene Trichloroethene	ND ND ND NO ND	10 10 10 10 10	9.83 10.6 10.9 10.8 10.3	98 106 109 108 103	10 10 10 10 10	9.14 9.8 9.96 10 9.67	91 98 100 100 97	. 7 8 9 8 6	75-125 75-125 75-125 75-125 75-125	20 20 20 20 20 20

Datestaranda da anticaria de 1975 de 1

SURROGATE PARAMETER	SPIKE AMT (ug/L)	MS'R\$LT (ug/L)	MS % REC	\$PIKE AMT (ug/L)	MSD RSLT (ug/L)	MSD % REC	QC LIMIT
1,2-Dichloroethane-d4	10 10	10.9 10.1	109. 101	10 10	9.24 9.58	92 96	65 - 135 75 - 125
Toluene-d8 Bromofluorobenzene	10	9.62	96	10	9.17	92	75-125

#### LABORATORY REPORT FOR

SES-TECH

CAMP PENDLETON, UST SITE 14137

METHOD 3520C/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS

SDG#: 06C140

·					
	*	·			
					ta Set
,					
				,	
•					

#### **CASE NARRATIVE**

**CLIENT:** 

SES-TECH

PROJECT:

**CAMP PENDLETON, UST SITE 14137** 

SDG:

06C140

#### METHOD 3520C/8270C SIM SEMI VOLATILE ORGANICS BY GC/MS

Eight (8) water samples were received on 03/15/06 for Semi Volatile Organic analysis by Method 3520C/8270C SIM in accordance with USEPA SW846, 3rd ed.

#### 1. Holding Time

Analytical holding time was met.

#### 2. Tuning and Calibration

Tuning and calibration were carried out at 12-hour interval. All QC requirements were met.

#### 3. Method Blank

Method blank was free of contamination at half of the reporting limit.

#### 4. Surrogate Recovery

Recoveries were within QC limit.

#### 5. Lab Control Sample/Lab Control Sample Duplicate

Recoveries were within QC limit.

#### 6. Matrix Spike/Matrix Spike Duplicate

Sample C140-06 was spiked. All recoveries were within QC limit.

#### 7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met.

LAB CHRONICLE SEMI VOLATILE ORGANICS BY GC/MS

Client	Client SS-TECH		#				11 11 11 11 11 11 11		SDG NO.	
Project	: CAMP PENDLETON, UST SITE 14137	, UST SITE 141	37						Instrument 1D	nt 10 : T-048
								16 16 17 11 11 11 11 11 11		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
					WATER	ĒR				
Client		Laboratory Dilution	Dilution	*	Analysis	Extraction	Sample	Calibration Prep.	n Prep.	
Sample 1D		Sample 1D	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1	1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 6	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E B 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MBLK 14	_	SVC018WB	_	ΑÑ	03/20/0611:37	03/17/0617:00	RC2256	RC2053	SVC018W	Method Blank
LCS1W	**************************************	SVC018WL	<del>-</del>	¥.	03/20/0611:56	03/17/0617:00	RC2257	RCZ053	SVC018W	Lab Control Sample (LCS)
LCD1W	-	SVC018WC	-	A.	03/20/0612:15	03/17/0617:00	RCZ258	RCZ053	SVC018W	LCS Duplicate
0004-119		C140-02	.95	NA	03/20/0615:37	03/17/0617:00	RCZ265	RC2053	SVC018W	Field Sample
0004-120		C140-03	76-	NA	03/20/0615:56	03/17/0617:00	RCZ266	RCZ053	SVC018W	Field Sample
0004-121		C140-04	26.	NA	03/20/0616:15	03/17/0617:00	RCZ267	RCZ053	SVC018W	Field Sample
0004-122		C140-05	76.	NA	03/20/0616:35	03/17/0617:00	RCZ268	RCZ053	SVC018W	Field Sample
0004-123		C140-06	76.	NA	03/20/0616:54	03/17/0617:00	RCZ269	RCZ053	SVC018W	Field Sample
0004-123MS	S)	C140-06M	76.	۸×	03/20/0617:13	03/17/0617:00	RCZ270	RCZ053	SVC018W	Matrix Spike Sample (MS)
0004-123MSD	(SD	C140-06S	76.	NA	03/20/0617:32	03/17/0617:00	RC2271	RC2053	SVC018W	MS Duplicate (MSD)
0004-124		C140-07	76.	A.	03/20/0617:51	03/17/0617:00	RC2272	RCZ053	SVC018W	Field Sample
0004-125		C140-08	96.	Ä	03/20/0618:10	03/17/0617:00	RC2273	RCZ053	SVC018W	Field Sample
0004-126		C140-09	76.	A.	03/20/0618:29	03/17/0617:00	RC2274	RCZ053	SVC018W	Field Sample

FN - Filename % Moist - Percent Moisture

# SAMPLE RESULTS

							_
				÷			
		1					
•							
•							7
					•		
·	•						
•	- American		*				
						y	
							÷
							-

Client : SES-TECH Project : CAMP PENDLETON, UST SITE 1 Batch No. : 06C140 Sample ID: 0004-119 Samp ID: C140-02 File ID: RCZ265 Btch ID: SVC018W Calib. Ref.: RCZ053	Date Collected: 03/14/06 4137 Date Received: 03/15/06 Date Extracted: 03/17/06 17:00 Date Analyzed: 03/20/06 15:37 Dilution Factor: .95 Matrix WATER % Moisture NA Instrument ID : T-048
PARAMETERS  ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(A)PYRENE BENZO(A)PYRENE BENZO(A)FLUORANTHENE BENZO(A)FLUORANTHENE BENZO(A)FLUORANTHENE BENZO(A, H, J)PERYLENE CHRYSENE DIBENZO(A, H)ANTHRACENE FLUORENE FLUORENE FLUORENE INDENO(1, 2, 3-CD)PYRENE NAPHTHALENE PHENANTHENE PHENANTHENE SURROGATE PARAMETERS TERPHENYL-D14 RL: Reporting Limit	RESULTS (ug/L) (ug/L) (ug/L)  ND (ug/L) (ug/L) (ug/L)  ND (ug/L) (ug/L)  19  ND (ug/L)

Client : SES-TECH Project : CAMP PENDLETON, UST SITE Batch No. : 06C140 Sample ID: 0004-120 Lab Samp ID: C140-03 Lab File ID: RC2266 Ext Btch ID: SVC018W Calib. Ref.: RC2053	Date 14137 Date Date Date Date Dilut Matri % Moi Instr	Extracted: 0 Analyzed: 0 ion Factor: . x sture: N	3/14/06 3/15/06 3/15/06 3/20/06 17:00 3/20/06 15:56 94 MATER IA -048
PARAMETERS  ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A) ANTHRACENE BENZO(A) ANTHRACENE BENZO(A) PYRENE BENZO(B) FLUORANTHENE BENZO(CB) FLUORANTHENE BENZO(CG, H, I) PERYLENE CHRYSENE DJBENZO(A, H) ANTHRACENE FLUORANTHENE FLUORENE INDENO(1, 2, 3-CD) PYRENE NAPHTHALENE PHENANTHENE PHENANTHENE PYRENE  SURROGATE PARAMETERS TERPHENYL-D14 RL: Reporting Limit	RESULTS (ug/L) ND	RL (ug/L) -94 1.9 1.9 1.94 1.94 1.94 1.94 1.94 1.94	MDL (ug/L) - 199 - 199

- Transit	Client : Project : Batch No. Sample ID: Samp ID: File ID: Btch ID: Calib. Ref.:	SES-TECH CAMP PENDLETON, 06C140 0004-121 C140-04 RCZ267 SVC018W RCZ053	ust :	==== SITE	14137	Date Date Date Date Dilut Matri % Moi	Collected: Received: Extracted: Analyzed: ion Factor: x sture ument ID:	03/14/06 03/15/06 03/17/06 17:00 03/20/06 16:15 .97 WATER NA T-048	
	PARAMETERS ACENAPHTHENE ACENAPHTHYLEN ACENAPHTHYLEN ANTHRACENE BENZO(A)ANTHR BENZO(A)ANTHR BENZO(A)FLUOR BENZO(B)FLUOR BENZO(C)FLUOR BENZO(C)FLUOR DIBENZO(A, H)FLUORANTHENE FLUORANTHENE INDENO(1, 2, 3) NAPHTHALENE PYRENE SURROGATE PAR	NE RACENE NE RANTHENE RANTHENE PERYLENE ANTHRACENE -CD)PYRENE				RESULTS (U9/L) ND	RL (ug/L) -97 -97 1-9 1-9 -97 1-9 1-97 1-97 1-97	MDL (ug/L) 	
	RI: Reporti	na limit							

Client : SES-TECH Project : CAMP PENDLETON, UST SITE Batch No. : 06C140 Sample ID: 0004-122 Lab Samp ID: C140-05 Lab File ID: RC2268 Ext Btch ID: SVC018W Calib. Ref.: RC2053	Date 14137 Date Date Date Dituti Matrix % Mois Instru	Collected: 03/ Received: 03/ Extracted: 03/ Analyzed: 03/ on Factor: .94 : : WAT iture : NA ment ID : T-0	14/06 15/06 17/06 20/06 20/06 16:35 ER
PARAMETERS  ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(G, H, I)PERYLENE CHRYSENE DIBENZO(A, H)ANTHRACENE FLUORANTHENE FLUORANTHENE FLUORANTHENE FLUORANTHENE FLUORANTHENE FLUORANTHENE PHENANTHRENE PHENANTHRENE PYRENE	RESULTS (ug/L) ND	RL) 19/L) 19/L) 19/2 19/2 19/2 19/2 19/2 19/2 19/2 19/2	MDL (ug/L) - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19
SURROGATE PARAMETERS TERPHENYL-D14 RL: Reporting Limit	% RECOVERY 68	QC LIMIT 50-130	

Client : SES-TECH Project : CAMP PENDLETON, UST SITE 1 Batch No. : 06C140 Sample ID: 0004-123 Samp ID: C140-06 File ID: RCZ269 Btch ID: SVC018W Lucib. Ref.: RCZ053	14137 Date Date Date Diluti Matriy % Mois	Extracted: 03, Analyzed: 03, on Factor: .94	/14/06 /15/06 /15/06 17:00 /20/06 16:54 fer
PARAMETERS  ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(B)FLUORANTHENE BENZO(B,FLUORANTHENE BENZO(G,FLUORANTHENE BENZO(G,FLUORANTHENE CHRYSENE DIBENZO(A,H)ANTHRACENE FLUORANTHENE FLUORANTHENE FLUORANTHENE FLUORANTHENE PHENANTHRENE PYRENE  SURROGATE PARAMETERS TERPHENYL-D14  RL: Reporting Limit	RESULTS (ug/L) ND	RL (ug/L) -94 -94 1.9 1.9 -94 1.9 1.9 1.9 -94 -94 -94 -94 1.9 QC LIMIT	MDL (ug/L) 

Client: SES-TECH Project: CAMP PENDLETON, UST SITE Batch No.: 06C140 Sample: ID: 0004-124 Lab Samp ID: C140-07 Lab File ID: RCZ27Z Ext Btch ID: SVC018W Calib. Ref.: RCZ053	Date C 14137 Date Date E Date E Dilutio Matrix % Moist Instrum	ollected: 03/ Received: 03/ Xtracted: 03/ Analyzed: 03/ on Factor: .97 ure : NA ent ID : T-0	14/06 15/06 17/06 17:00 20/06 17:51 ER 48
PARAMETERS  ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(C)FLUORANTHENE BENZO(C, H, I)PERYLENE CHRYSENE DIBENZO(A, H)ANTHRACENE FLUORANTHENE FLUORANTHENE FLUORENE INDENO(1, 2, 3-CD)PYRENE NAPHTHALENE PHENANTHRENE PYRENE  SURROGATE PARAMETERS TERPHENYL-D14	RESULTS (ug/L) ND	RL (ug/L) 	MDL (ug/L) -19 -19 -19 -19 -19 -19 -19 -19 -19 -19

z52=05FF=779002###55574##609##=+*225	:======================================		========= 1/./06
Client : SES-TECH Project : CAMP PENDLETON, UST SITE 1 Batch No.: 06C140 Sample ID: 0004-125 Samp ID: C140-08 File ID: RC2273 Atch ID: SVC018W Guib. Ref.: RCZ053	Date Date Date Date Date Dilut Matrix Mois Instri	Collected: 03/ Received: 03/ Extracted: 03/ Analyzed: 03/ ion Factor: .96 K sture NA LIMENT ID T-0	15/06 17/06 17/06 17:00 20/06 18:10 ER 48
PARAMETERS	RESULTS (ug/L)	RL (ug/L)	MDL (ug/L)
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENÉ BENZO(A)ANTHRACENE	ND ND ND ND	.96 1.9 1.9	.19 .19 .19 .19
BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BENZO(G,H,I)PERYLENE CHRYSENE	ND ND	.96 99.99 1.996 1.996 1.996 1.996 1.996	199999999999999999999999999999999999999
CHRYSENE CHRYSENE DIBENZO(A H)ANTHRACENE FLUORANTHENE FLUORENE	00 00 00 00 00 00 00 00 00 00 00 00	1.9 96 1.9 1.9	.19 .19 .19 .19
INDENO(1,2,3-CD)PYRENE NAPHTHALENE PHENANTHRENE PYRENE	ND ND ND ND	.96 .96 1.9	.19 .19 .19 .19
SURROGATE PARAMETERS TERPHENYL-D14	% RECOVERY	QC LIMIT 50-130	
RL: Reporting Limit			

Client : S Project : C Batch No. : C Sample ID: C Lab Samp ID: C Lab File ID: S Ext Btch ID: S Calib. Ref.: R	ES-TECH AMP PENDLETON, 6C140 004-126 140-09 CZ274 VC018W CZ053	UST SITE	Date 14137 Date Date Date Dilu Matr % Mo Inst	isture N	
PARAMETERS  ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRA BENZO(A)PYRENE BENZO(K)FLUORA BENZO(K)FLUORA BENZO(K)FLUORA BENZO(K)FLUORA BENZO(K)FLUORA BENZO(K)FLUORA BENZO(K)FLUORA FLUORANTHENE FLUORANTHENE PHENANTHRENE PYRENE	CENE NTHENE NTHENE NTHENE RYLENE THRACENE		RESULTS (ug/L) ND	RL (ug/L) -94 1-94 1-94 1-94 1-94 1-94 1-94	MDL (ug/L) 
SURROGATE PARA TERPHENYL-D14	METERS		% RECOVERY 81	QC LIMIT 50-130	

RL: Reporting Limit

# QC SUMMARY

					-
			•		
·					
	•				
					*******
		-			
				*	
v	uaned* *	-			
				-	
					S.
					-

Client : SES-TECH Project : CAMP PENDLETON, US' Batch No. : 06C140 Sample ID: MBLK1W Samp ID: SVC018WB File ID: RC2256 Btch ID: SVC018W Calib. Ref.: RCZ053	T SITE 14137 Date Date Date Dilut Matri % Moi	Collected: NA Received: 03/17 Extracted: 03/17 Analyzed: 03/20 ion Factor: 1 x WATER sture NA ument ID T-048	
PARAMETERS  ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PENE CHRYSENE DIBENZO(A,H)ANTHRACENE FLUORANTHENE FLUORANTHENE FLUORENE INDENO(A,H)ANTHRACENE PHENANTHRENE PYRENE	RESULTS (ug/L) ND	RL (ug/L) 1 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MDL (ug/L)
TERPHENYL-D14 RL: Reporting Limit	77	50-130	

## EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS



CLIENT: PROJECT: BATCH NO.: METHOD:

SES-TECH CAMP PENDLETON, UST SITE 14137 06C140 SW 352OC/827OC SIM

% MOISTURE:

MATRIX: WATER
DILUTION FACTOR: 1
SAMPLE ID: MBLK1W
LAB SAMP ID: SVC018WB SVC018WL
LAB FILE ID: RCZ256
DATE EXTRACTED: 03/17/0617:00 03/20/0611:36
PREP. BATCH: SVC018W
CALIB. REF: RCZ053 RCZ053 svc018WC RCZ258 03/17/0617:00 03/20/0612:15 svc018W RCZ053

ACCESSION:

PARAMETER	BLNK RSLT (ug/L)	SPIKE AMT	BS RSLT (ug/L)	BS % REC	SPIKE AMT (ug/L)	BSD RSLT (ug/L)	BSD % REC	RPD (%)	QC LIMIT	MAX RPD (%)
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND ND ND ND ND ND ND ND ND	100000000000000000000000000000000000000	7491 7191 7681 887 7765 7765 7765 7765 7765 7765 7765	7257789025896923	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5.05376443988713352526 7.86667.13352526 7.57556.14891	5567786667657556	13372323585726963	40-1330000000000000000000000000000000000	30000000000000000000000000000000000000

SPIKE AMT BSD RSLT (ug/L) 10 6.72 BSD % REC 67 SPIKE AMT (ug/L) BS RSLT (ug/L) 6.8 % REC 68 SURROGATE PARAMETER 50-130 Terphenyl-d14 10

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

LARDRAY ORING, INC.

CLIENT: PROJECT: BATCH NO.: METHOD:

SES-TECH CAMP PENDLETON, UST SITE 14137 06C140 SW 3520C/8270C SIM

.94 .94 % MOISTURE:

NA

IX: TION FACTOR: SAMPLE ID: LAB SAMP ID: LAB FILE ID: DATE EXTRACTED: DATE ANALYZED: PREP. BATCH: CALIB. REF: WATER 94 0004-123 C140-06 RCZ269 03/17/0617:00 03/20/0616:54 SVC018W RCZ053

C140-06M RCZ270 03/17/0617:00 03/20/0617:13 SVC018W RCZ053

C140-06S RC2271 03/17/0617:00 03/20/0617:32 SVC018W RC2053

DATE COLLECTED: DATE RECEIVED:

ACCESSION:

PARAMETER	SMPL RSLT (ug/L)	SPIKE AMT (ug/L)	MS RSLT (ug/L)	MS % REC	SPIKE AMT (ug/L)	MSD RSLT (ug/L)	MSD % REC	RPD (%)	QC LIMIT	MAX RPD
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	999999999999999999999999999999999999999	8958139858934836 93770996417730965 455556555555555555	57711434086273409 5566666656656565	9999999999999999	4145379731918894 5944814419686505 445556455555454555	80880068859770949 4555564556455	9966348464204000	0-1150000000000000000000000000000000000	339000000000000000000000000000000000000

QC LIMIT SPIKE AMT

SURROGATE PARAMETER Terphenyl-d14

SPIKE A... (ug/L) 9.4 (ug/L) 6.73

MS % REC 72

SPIKE AMT (ug/L) 9.4 MSD RSLT (ug/L) 6.82

MSD % REC 73 50-130



### LABORATORY REPORT FOR

#### SES-TECH

CAMP PENDLETON, UST SITE 14137

## METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 06C140

• • 



#### **CASE NARRATIVE**

CLIENT:

SES-TECH

PROJECT:

**CAMP PENDLETON, UST SITE 14137** 

SDG:

06C140

## METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Eight (8) water samples were received on 03/15/06 for Total Petroleum Hydrocarbons by Extraction analysis by Method 3520C/8015B in accordance with SW846 3RD Edition.

#### 1. Holding Time

Analytical holding time was met. Extraction was performed on 03/20/06 and completed on 03/21/06.

#### 2. Calibration

Initial calibration was seven points for Diesel. %RSDs were within 20%. Continuing calibrations were carried out at 12-hour intervals and all recoveries were within 85-115%.

#### 3. Method Blank

Method blank was free of contamination at half of the reporting limit.

#### 4. Surrogate Recovery

All recoveries were within QC limits.

#### 5. Lab Control Sample/Lab Control Sample Duplicate

All recoveries were within QC limits.

#### 6. Matrix Spike/Matrix Spike Duplicate

Sample C140-06 was spiked. Recoveries were within QC limits.

#### 7. Sample Analysis

Samples were analyzed according to the prescribed QC procedures. All criteria were met. Sample results were quantitated from C10 to C24 using Diesel (C10-C24) calibration factor.

Samples C140-04, -07 and -08 displayed motor oil-like fuel pattern.

LAB CHRONICLE
TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Client Project	: SES-IECH : CAMP PENDLETON, UST SITE 14137	, UST SITE 14	137						SDG NO. Instrument ID	: 06C140 ant ID : GCT050
			 	ii (1 (1 (1 (1) (1) (1)			11 11 11 11 11 11 11 11 11 11			
Client		Laborator	aboratory Dilution	34	Analysis	Extraction	Sample	Calibration Prep.	in Prep.	
Sample 1D		Sample 1D	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MBLK1W		DSC018WB	4	NA	03/22/0620:04	03/20/0612:00	TC21040A	TC21036A	DSC018W	Method Blank
LCS1W		DSC018WL	<i>-</i>	ΝĄ	03/22/0618:40	03/20/0612:00	TC21038A	TC21036A	DSC018W	Lab Control Sample (LCS)
LCD1W	vanitation.	DSC018WC	-	NA	03/22/0619:23	03/20/0612:00	TC21039A	TC21036A	DSC018W	LCS Duplicate
0004-119		C140-05	76.	. NA	03/23/0604:27	03/20/0612:00	TC21052A	TC21049A	DSC018W	Field Sample
0004-120		C140-03	. 76.	¥¥	03/23/0605:08	03/20/0612:00	TC21053A	TC21049A	DSC018W	Field Sample
0004-121		C140-04	. 95	NA	03/23/0605:50	03/20/0612:00	TC21054A	TC21049A	DSC018W	Field Sample
0004-122		C140-05	. 46.	NA	03/23/0610:43	03/20/0612:00	TC21061A	TC21049A	DSC018W	Field Sample
0004-123		C140-06	, 56.	МĀ	03/23/0606:32	03/20/0612:00	TC21055A	TC2:1049A	DSC018W	Field Sample
0004-124		C140-07	· 46°	ΝÀ	03/23/0608:37	03/20/0612:00	TC21058A	TC21049A	DSC018W	Field Sample
0004-125		C140-08	· 76.	NA	03/23/0609:19	03/20/0612:00	TC21059A	TC21049A	DSC018W	Field Sample
0004-126		C140-09	.95	NA NA	03/23/0610:01	03/20/0612:00	TC21060A	TC21049A	DSC018W	Field Sample
0004-123MS		C140-06M	. 95 v	N.	03/23/0607:13	03/20/0612:00	TC21056A	TC21049A	DSC018W	Matrix Spike Sample (MS)
0004-123MSD	۵	C140-06S	· 96.	NA	03/23/0607:55	03/20/0612-00	15210574	TC210494	nSC018u	MS Durolicate (MSD)

FN - Filename % Moist - Percent Moisture



## SAMPLE RESULTS





Client Date Collected: 03/14/06 : SES-TECH : CAMP PENDLETON, UST SITE 14137 ુject Date Received: 03/15/06 ch No. : 06C140 Date Extracted: 03/20/06 12:00 sample ID: 0004-119 Date Analyzed: 03/23/06 04:27 Lab Samp ID: C140-02 Dilution Factor: .94 Matrix : WATER
% Moisture : NA
Instrument ID : GCT050 Lab File ID: TC21052A Ext Btch ID: DSC018W Calib. Ref.: TC21049A

______

 PARAMETERS
 RESULTS (mg/L) (mg/L) (mg/L)
 RL (mg/L) (mg/L) (mg/L)

 DIESEL
 ND .094
 .024

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE 98 65-135

RL : Reporting Limit
Parameter H-C Range
Diesel C10-C24



=========		=======		=====	==========		=====
Client :	SES-TECH			Date	Collected:	03/14/06	
Project :	CAMP PENDLETON, US	ST SITE	14137	Date	Received:	03/15/06	
Batch No. :	06C140			Date	Extracted:	03/20/06	12:00
Sample ID:	0004-120			Date	Analyzed:	03/23/06	05:08
Lab Samp ID:				Dilut	ion Factor:	.94	
Lab File ID:	TC21053A			Matri	к :	WATER	
Ext Btch ID:	DSC018W			% Mois	sture :	NA	
Calib. Ref.:	TC21049A			Instru	ument ID :	GCT050	
=========		=======	========	=====			====
			RESL	JLTS	RL		MDL
PARAMETERS			(mg	3/L)	(mg/L)	(	mg/L)
						-	
DIESEL			Ŋ	ID	.094		.024

% RECOVERY

98

QC LIMIT

65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24

SURROGATE PARAMETERS

HEXACOSANE



Client : SES-TECH Date Collected: 03/14/06
Poject : CAMP PENDLETON, UST SITE 14137 Date Received: 03/15/06
Ch No. : 06C140 Date Extracted: 03/20/06

 Och No. : 06C140
 Date Extracted: 03/20/06 12:00

 Dample ID: 0004-121
 Date Analyzed: 03/23/06 05:50

 Lab Samp ID: C140-04
 Dilution Factor: .95

 Lab File ID: TC21054A
 Matrix : WATER

 Ext Btch ID: DSC018W
 % Moisture : NA

 Calib. Ref.: TC21049A
 Instrument ID : GCT050

 PARAMETERS
 (mg/L)
 (mg/L)
 (mg/L)

 DIESEL
 2.2 / .095
 .024

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE 108 65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24



Date Collected: 03/14/06 Client : SES-TECH Project : CAMP PENDLETON, UST SITE 14137 Batch No. : 06C140 Date Received: 03/15/06

Date Extracted: 03/20/06 12:00 Date Analyzed: 03/23/06 10:43

Sample ID: 0004-122 Lab Samp ID: C140-05 Dilution Factor: .94 Matrix : WATER % Moisture : NA
Instrument ID : GCT050 Lab File ID: TC21061A Ext Btch ID: DSC018W Calib. Ref.: TC21049A

RESULTS RL (mg/L) (mg/L) (mg/L) PARAMETERS ND .094 .024 DIESEL

% RECOVERY QC LIMIT SURROGATE PARAMETERS .............. -----90 65-135 HEXACOSANE

RL : Reporting Limit H-C Range Parameter Diesel C10-C24



Client : SES-TECH Date Collected: 03/14/06

ject : CAMP PENDLETON, UST SITE 14137 Date Received: 03/15/06

ch No. : 06C140 Date Extracted: 03/20/06

ch No. : 06C140 Date Extracted: 03/20/06 12:00 Date ID: 0004-123 Date Analyzed: 03/23/06 06:32

 Lab Samp ID: C140-06
 Dilution Factor: .94

 Lab File ID: TC21055A
 Matrix : WATER

 Ext Btch ID: DSC018W
 % Moisture : NA

 Calib. Ref.: TC21049A
 Instrument ID : GCT050

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24



Client : SES-TECH Date Collected: 03/14/06 Date Received: 03/15/06

Project : CAMP PENDLETON, UST SITE 14137 Batch No. : 06C140 Date Extracted: 03/20/06 12:00 Sample ID: 0004-124 Date Analyzed: 03/23/06 08:37

Dilution Factor: .94 Lab Samp ID: C140-07 : WATER : NA Matrix Lab File ID: TC21058A Ext Btch ID: DSC018W % Moisture Instrument ID : GCT050 Calib. Ref.: TC21049A

RESULTS RL. (mg/L)PARAMETERS (mg/L)(mg/L) _____ DIESEL .25 , .094 .024

% RECOVERY QC LIMIT SURROGATE PARAMETERS ----------------107 65-135 HEXACOSANE

: Reporting Limit H-C Range Parameter c10-c24 Diesel



Client : SES-TECH Date Collected: 03/14/06
iect : CAMP PENDLETON, UST SITE 14137 Date Received: 03/15/06
ch No. : 06C140 Date Extracted: 03/20/06 12:00

 Sample ID: 0004-125
 Date Analyzed: 03/23/06 09:19

 Lab Samp ID: C140-08
 Dilution Factor: .94

 Lab File ID: TC21059A
 Matrix : WATER

 Ext Btch ID: DSC018W
 % Moisture : NA

 Calib. Ref.: TC21049A
 Instrument ID : GCT050

 PARAMETERS
 (mg/L)
 (mg/L)
 (mg/L)

 DIESEL
 .26
 .094
 .024

SURROGATE PARAMETERS % RECOVERY QC LIMIT
HEXACOSANE 107 65-135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24



		========		=======		=====
Client : SES-TECH			Date	Collected:	03/14/06	
Project : CAMP PENDLETON,	, UST SITE	14137	Date	Received:	03/15/06	
Batch No. : 06C140			Date	Extracted:	03/20/06	12:00
Sample ID: 0004-126			Date	Analyzed:	03/23/06	10:01
Lab Samp ID: C140-09			Diluti	on Factor:	.95	
Lab File ID: TC21060A			Matrix	:	WATER	
Ext Btch ID: DSC018W			% Mois	ture :	NA	
Calib. Ref.: TC21049A			Instru	ment ID :	GCT050	
	========		======	===========		
•						
		RES	ULTS	RL		MDL

	RESULTS	RL	MDL
PARAMETERS	(mg/L)	(mg/L)	(mg/L)
DIESEL	ND	.095	.024
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT	
HEXACOSANE	107	65-135	

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24



# QC SUMMARIES

		***	<u>.</u>
·			
			/ -



Client : SES-TECH	Date Collected: NA
ect : CAMP PENDLETON, UST SITE 1413	7 Date Received: 03/20/06
h No. : 06C14O	Date Extracted: 03/20/06 12:00
Sample ID: MBLK1W	Date Analyzed: 03/22/06 20:04
Lab Samp ID: DSC018WB	Dilution Factor: 1
Lab File ID: TC21040A	Matrix : WATER
Ext 8tch ID: DSC018W	% Moisture : NA
Calib. Ref.: TC21036A	Instrument ID : GCT050
	************************
	RESULTS RL MDL
PARAMETERS	(mg/L) $(mg/L)$ $(mg/L)$

.025

DIESEL	ND	.1
SURROGATE PARAMETERS	% RECOVERY	QC LIMIT
HEXACOSANE	112	6 <del>5</del> - 135

RL: Reporting Limit
Parameter H-C Range
Diesel C10-C24



#### **EMAX QUALITY CONTROL DATA** LCS/LCD ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

06C140 BATCH NO.:

METHOD 3520C/8015B METHOD:

MATRIX: DILUTION FACTOR: 1

WATER

% MOISTURE:

NA

SAMPLE ID: LAB SAMP ID: LAB FILE ID:

MBLK1W

DSC018WL

DSC018WC

TC21040A TC21038A DATE EXTRACTED: 03/20/0612:00 03/20/0612:00 03/20/0612:00

TC21039A

03/22/0620:04

03/22/0618:40

03/22/0619:23

DATE COLLECTED: NA

DATE RECEIVED: 03/20/06

DATE ANALYZED: PREP. BATCH: CALIB. REF:

DSC018W

DSC018WB

DSC018W

DSC018W

TC21036A TC21036A TC21036A

ACCESSION:

PARAMETER

SPIKE AMT BLNK RSLT (mg/L) (mg/L)

ND

BS BS RSLT (mg/L) % REC 92 4.61

SPIKE AMT (mg/L)

BSD RSLT (mg/L) 4.61

RPD (%) % REC 92

QC LIMIT MAX RPD (%) (%) 65-135

30

Diesel

SURROGATE PARAMETER ______

Hexacosane

SPIKE AMT (mg/L)

BS RSLT (mg/L) .25 .275

B\$ % REC 110

(mg/L) .25

SPIKE AMT

BSD RSLT (mg/L). 282

% REC (%)

BSD

65-135 113

QC LIMIT



#### EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT:

SES-TECH

PROJECT:

CAMP PENDLETON, UST SITE 14137

"CH NO.:

06C140

METHOD 3520C/8015B IOD:

MATRIX: DILUTION FACTOR: .94

WATER

. 95

.96

% MOISTURE:

DATE COLLECTED: 03/14/06

NA

SAMPLE ID: LAB SAMP ID: LAB FILE ID: 0004-123

C140-06

C140-06M

C140-06S

TC21057A

TC21055A DATE EXTRACTED: 03/20/0612:00 03/20/0612:00 03/20/0612:00

TC21056A

03/23/0606:32 03/23/0607:13 03/23/0607:55

DATE ANALYZED: PREP. BATCH: CALIB. REF:

DSC018W TC21049A

DSC018W TC21049A

TC21049A 1

DSC018W

DATE RECEIVED: 03/15/06

ACCESSION:

SPIKE AMT MSD RSLT MSD RPD QC LIMIT MAX RPD SMPL RSLT SPIKE AMT MS RSLT MS (%) (%) (%) PARAMETER (mg/L) (mg/L) % REC (mg/L) (mg/L) % REC (mg/L) -----65-135 30 ND 4.75 4.44 93 4.8 4.16 87 Diesel

SPIKE AMT MS RSLT SPIKE AMT MSD RSLT MSD QC LIMIT (mg/L) % REC % REC (mg/L) (mg/L) (%) SURROGATE PARAMETER (mg/L) -----.266 256 65-135 .238 .24 107 Hexacosane 112

SWES